AC PDP의 휘도 및 효율 향상을 위한 새로운 Fence 전극구조

윤초롬, 조성용, 석창우, 한문기, 하창승, 박차수*, 이해준, 박정후 부산대학교 전기공학과

The new fence structure in the AC PDP for a high luminance and luminous efficiency

Cho Rom Yoon, Sung-Yong Cho, Chang-Woo Seok, Moon-Ki Han, Chang-Seung Ha, Cha-Soo Park, Hae-Jun Lee, Chung-Hoo Park

Department of Electrical Engineering, Pusan National University. *Korea Electric Power Corporation

Abstract - 기존의 fence전극구조는 ITO구조에 비해 방전전류가 감소함에도 불구하고 휘도가 대폭 감소하여 효율이 떨어지는 것 으로 알려져 있다. 따라서 효율 상승을 위하여 다음과 같은 fence구조를 제안하였다. 실험은 reference(Conventional T-전극 구조)와 제안된 구조들로 구성되어 있는 4-inch AC-PDP test Panel을 직접 제작하여 discharge current, luminance, luminous efficiency를 측정하여 비교하였다. 제안된 구조들은 방전전류 최 대 10%감소, 휘도는 최대 20%증가하였고 효율면에서도 최대 20%의 상승을 보였다.

1. 서 론

최근 대중 매체의 발달과 더불어 대화면 평판 디스플레이 소 자에 대한 요구가 증대되고 있다. 이와 동시에 디지털 TV 방송 시대가 도래함으로써 디지털 방송에 적합한 40인치 이상의 대형 디스플레이 소자의 요구 또한 증대되고 있다. 이에 ac-PDP (Plasma Display Panel)는 기존의 CRT(Cathode ray tube)나 LCD(Liqid Crystal Display)에 비해 대형화가 용이하다는 장점으 로 인해 차세대 디스플레이 소자로서 각광 받고 있다.[1~3] 그러 나, 최근 상품화된 PDP의 효율은 1.8 lm/w 정도로서 다른 디스 플레이 소자에 비해 효율이 낮다는 문제점을 지니고 있다. 또한, PDP는 가격이 높고 제정공정이 복잡한 문제점을 가지고 있다. 이러한 문제점들은 광시야각, 대형화의 용이함, 긴 수명, 선명한 화질 같은 PDP의 장점에도 불구하고 PDP 시장의 확장을 가로 막고 있다. 본 논문에서는 ITO를 이용한 구조보다 휘도는 다소 낮지만 PDP의 높은 가격과 복잡한 제조공정을 해결하기 위해서 ITO를 사용하지 않는 fence구조를 도입하였다. 또, 현재 사용하 는 구동방식의 큰 문제점으로는 주사(Addressing)에 소요되는 시 간이다. 이것은 표시방전 시간의 감소로 이어지게 된다.

본 연구에서는 ac-PDP의 문제점 중 높은 가격과 복잡한 제조 공정을 해결하고 기존의 fence전극구조보다 효율향상, 주사 (Addressing)에 소요되는 시간을 줄이기 위하여 새로운 fence전 극구조를 제안하였다.

2. 본 론

2.1 실험방법

그림1은 현재 널리 이용되고 있는 ac-PDP의 개략도를 나타 내고 있다. 본 연구에서는 4인치 ac-PDP로 3mm 두께의 2장의 유리로 구성되어 있고, 이 중 상판에는 방전을 유지할 수 있도록 한 쌍의 투명 전극이 형성되어져 있고 투명 전극의 저항을 낮추 기 위해, 금속 버스전극이 프린팅 법으로 형성되어져 있다. 그러 나 본 연구에서는 투명전극을 사용하지 않고 버스전극만을 이용 한 fence 구조를 사용하였다.

그 위에는 투명 유전층과, MgO 보호층이 프린팅법 및 E-beam증착법으로 각각 형성되어져 있다. 하판에는 방전을 제어 하기 위한 Address 전극이 형성되어져 있고, 그 위에 유전층과 셀간의 구분을 위하여 sandblaster 기법에 의한 격벽이 형성되어 있다.[4] 본 연구에서는 Stripe형 격벽을 사용하였다. 그리고 방전 에 의해 발생된 진공 자외선(VUV, Vacuum Ultra Violet)을 가 시광으로 변환시키기 위해 R, G, B 삼원색의 형광체가 도포되어 있다.

그림2의 (b),(c),(d)는 본 실험에 쓰인 유지전극 모양을 나타낸 것이며, 그림2의 (a)는 종래의 면방전 ac PDP의 fence 전극 구조 로서 새로운 유지전극의 방전특성과 비교하기 위해 제작하여 사 용하였다.

이때 제안된 구조인 (b),(c),(d)구조는 모두 ∏형-전극의 모양을 유지하면서 전극모양이나 길이에 조금씩 변화를 주었다. (b)의 Pi구조는 빨간색으로 표시된 BUS전극이 회색으로 표시된 격벽 중 가로쪽 격벽과 맞닿지 않고 40um의 간격을 두고 떨어져 있는 반면, (c)의 Wide Pi구조와 (d)의 Asymmetry Wide Pi구조는 BUS전극과 가로/세로격벽이 10um의 폭만큼 겹쳐져 있다. 그리 고 (d)의 Asymmetry Wide Pi구조는 (c)의 Wide Pi구조에서 유 지전극의 음극/양극의 모양을 다르게 하여 전극을 비대칭 으로 형성하였다.

그리고 표1은 그림에 있어서 해당되는 전극의 실제의 수치를 표시한 것이다. 또한, 동일한 시료제작 조건하에서 시료의 특성 을 비교하기 위하여 동일한 기관 위에 시료를 제작하여 제작 공 정상의 오차를 최소화하였다.

완성된 상판과 하판은 sealing과정을 거치고 난 후 고온배기를 하였고, 최종적으로 Ne(base)+Xe(8%)의 가스를 400Torr주입한 뒤 aging 후 측정을 행하였다.

<표 1> 4-inch 테스트모델의 사양

Front Panel		Rear Panel	
Electrode width	40um	Address electrode width	100um
Discharge gap (a)	60um	White back thickness	20um
Discharge gap (b,c,d)	100um	Rib width	60um
Dielectric thickness	40um	Rip height	130um
MgO thickness	5000Å	Phosphor thickness	20um
Working gas : Ne(base) + Xe(8%) 400Torr			

위의 표1은 본 실험을 위해 제작한 시료의 세부사양이며, 실험 장치는 크게 signal 발생 부분(Time 98)과 구동회로 부분, 그리 고 오실로 스코프로 구성되어 있다. 오실로 스코프는 본 실험에서 전압과 전류, 주사 시간

(addressing time)을 측정하기 위해 사용하였고(LeCroy, LT224),

휘도측정기(Luminance Colormeter, BM-7)는 실험 시 휘도의 측 정을 위해 사용하였다.

그림 3은 광파형의 분산정도를 측정하기 위해서 사용된 ADS 구동 파형의 개략도이다.

그림 4는 전압을 변화시켰을 때의 각각의 방전전류의 변화량을 T-구조를 기준으로 표준화하여 나타낸 것으로 모든 제안된 전극 구조가 종래의 T-구조보다 방전전류가 감소하였다. 여기서 Asymmetry Wide Pi구조는 전류감소량이 3% 이내로 거의 동일 수준이었으나 Pi와 Wide Pi구조는 종래의 전극구조보다 방전전 류가 최대 10% 감소하였다.

<그림 4>T-전극구조와 제안된 구조들의 Power[W]/Pulse

그림 5는 전압을 변화시켰을 때의 각각의 휘도의 변화량을 나 타낸 것으로 T-구조를 기준으로 표준화하여 나타낸 것으로 모든 제안된 전극구조가 종래의 T-구조보다 휘도가 증가하였다.

이때 제안된 Pi구조는 T-구조에 비하여 5%증가하였고, Wide Pi 구조는 이보다 3% 더 증가하였으며 Asymmetry Wide Pi구 조는 Wide Pi구조 대비 12% 더 증가하였다. 따라서 Asymmetry Wide Pi구조는 T-구조에 비하여 휘도가 20% 증가하였다.

<그림 5>T-전극구조와 제안된 구조들의 휘도

그림 6은 전압을 변화시켰을 때의 각각의 효율의 변화량을 나 타낸 것으로 모든 제안된 전극구조가 종래의 전극구조보다 증가 하였다. 특히, 제안된 전극구조 Asymmetry Wide Pi는 종래의 전극구조보다 효율이 최대 20% 향상되었다.

<그림 6> T-전극구조와 제안된 구조들의 효율

그림7의 (a)~(d)는 그림 5과 같은 인가파형(ADS)으로 구동했 을 때 conventional T-구조와 제안된 구조에서 주사(addressing) 구간에서 측정된 광파형을 검출한 것으로 광파형의 분산 정도, 즉 통계적 방전 늦음이 약 50%정도 개선되었다. 이것은 주사 (addressing)에 소요되는 시간을 줄임으로써 상대적으로 display 기간을 늘릴 수 있어 휘도의 증가를 가져올 수 있을 것이다.

이상의 실험에서는 PDP의 문제점 중 높은 가격과 복잡한 제 조공정을 해결하기 위해서 fence전극구조를 도입하였다. 제안된 전극구조의 방전전류는 기존의 전극구조보다 평균 5%, 최대10% 감소하였다. 또한, 휘도는 종래 전극구조보다 평균10%, 최대 20% 높았다. 제안된 구조의 효율은 기존의 구조에 비해 평균 15%, 최대 20% 향상되었으며 주사시간은 약 50% 감소시킬 수 있음을 확인하였다. 실험적인 결과를 통해 제안된 Wide형 fence 구조 및 양/음극 모양 전체 비대칭 fence구조는 종래의 T-fence 구조보다 향상된 광학적 특성을 가지고, 이것은 PDP시장의 안정 성을 확보할 수 있을 것으로 생각된다.

[참 고 문 헌]

[1] Joseph A. Castellano. "Handbook of display technology." Academic press Inc.,1992

[2] M. Sawa. H.Uchiike. S.Zhang. and K.Yoshida. "Direct observation of VUV rays for suface-discharge ac plasma displays by using an ultra-high-speed electronix camera." SID 98 DIGEST. Pp361-364.1998

[3] Larry F. weber. "The promise of Plasma Display for HDTV". Information Display(SID). Vol. 16. no.12. pp16–20.2000 [4] T. Nichio et al. "High-Luminance and High Definition 50-in.-Diagonal Co-Planar Color PDPs with T-Shaped Electrodes." SID99 digest. Pp268–271.1999

[5] C. H. Park et al. "Surface-discharge characteristics of MgO-thin films prepared by reactive Rfunbalance magnetron sputtering."Thin Solid Films. Vol 366. pp88-94.

[6] C. H. Park et al. "An Electrical and Optical Characteristics of the Color ac Plasma Displays with a New Cell Structure." Journal of Information Display. Vol. 2. no. 1. pp5–9.2001