765kV 선로 편단가압 시 전압상승 분석

서훈철*, 여상민**, 김철환**, 유영식***, 조범섭*** 기초전력연구원*, 성균관대학교**, 한국전력거래소***

Overvoltage Analysis for One Side Energization of 765kV Line

*H. C. Seo, **S. M. Yeo, **C. H. Kim, ***Y. S. Yoo, ***B. S. Jo * KESRI, **Sungkyunkwan University, ***KPX

Abstract - 본 논문에서는 765kV 선로의 편단가압 시 기존 운전중인 선로에서의 전압상승에 대하여 분석하였다. EMTP-RV를 이용하여 당 진T/P ~ 신서산S/S ~ 신안성S/S의 실계통 모델을 구현하여, 선로길 이 및 전원용량을 변경시키면서 시뮬레이션 하였으며 그 결과를 분석하 였다.

1. 서 론

현재, 우리나라는 765kV 선로가 운전중이다. 전력수요 증가에 따른 전력요구에 부합하기 위하여 현재 더욱 많은 765kV 선로를 건설중에 있다. 765kV 선로의 계통 연결 시 이상 과도현상(가압 시 전압변동, ULTC 동작조건에 따른 순환전류 등), 보호계전, 전력유도 등의 여러 가 지 문제점이 발생할 수 있다. 신규설비의 계통연결 시, 이러한 문제점들 을 최소화하기 위하여 기존 운전중인 765kV 선로를 대상으로 여러 가 지 과도현상들을 분석하는 것은 중요한 일이다.

따라서, 본 논문에서는 이러한 현상 중 765kV 선로의 편단가압 시 전 압상승에 대하여 분석하였다. 우선, 현재 운전중인 765kV 실계통 모델 을 EMTP-RV를 이용하여 구현하였다. 그 다음으로 선로의 편단가압에 대하여 다양한 조건을 구성하여 시뮬레이션 하였으며, 그 결과를 분석하 였다.

2. 765kV 선로[1]

2.1 765kV 선로의 제원

765kV의 가공 송전용 전선은 강심 알루미늄 연선 (ACSR) 480mm CADINAL이며, 그 제원은 다음 표 1와 같다. 765kV 전선은 6개의 소도 체로 구성되며, 소도체 사이의 간격은 40cm이다.

<표 '	1>	강심	알루미늄	연선	(ACSR)	480mm²	CADINAL의	제원
------	----	----	------	----	--------	--------	----------	----

선 종	연선 ⁻ 소선수/ [mi	হা	경	전 기 저 항	허용전류		송전허용용량 [MW] 역율90%기준	T/D (알루미늄 두께/ 도체 직경)	
	Al	St	Al	St	[Ω/km]	연속 [A]	단시간 [A]	765kV	0.333
C480	54/3.38	7/3.38	30.4	20.1	40.0599	919	1014	1096	

765kV의 송전선로에서 가공지선은 강심 알루미늄 피복 강연선 가공 지선 (AWS) 200mm 이며, 그 제원은 다음 표 2와 같다.

<표 2> 강심 알루미늄 피복 강연선 가공지선 (AWS) 200mi의 제원

선종	연선 소선수/ [m	구성 /소선경 m]	প্র	경	전 기 저 항	र्व {	광 전류	T/D (알루미늄 두께/ 도체 직경)
	Al	St	Al	St	[Ω/km]	연속 [A]	단시간 [A]	0.5
A200	19/3.7	-	18.5	-	0.2855	759	819	

2.2 765kV 철탑의 제원

765kV 철탑의 기하학적 배치는 다음 그림 1과 같다.

3. 시뮬레이션

3.1 EMTP-RV를 이용한 765kV 계통모델의 구현

다음 그림 2는 당진T/P ~ 신서산S/S ~ 신안성S/S의 현재 운전중인 765kV 모델계통에 대하여 EMTP-RV를 이용하여 구현한 것이다. 당진 T/P 7기 운전중으로 용량은 4296MVA이며, 선로길이는 전체 175.86km 이고, 부하는 3000MVA, 역률 0.95이다.

3.1.1 765kV 선로 모델링

철탑 및 전선 제원에 대하여 LINE DATA를 이용하여 다음 그림 3과 같이 입력할 수 있다. 도체 데이터 화면에서 Phase Number에는 가공지 선의 경우 0, 그 외에는 1, 2, 3 등을 입력하며, DC resistance에는 직류 저항을 입력한다. Outside diameter는 전선의 외경을, Horizontal distance에는 철탑의 중심을 기준으로 하여 왼쪽의 경우는 (-)를 오른쪽 의 경우는 (+)를 입력한다. Vertical Height at tower에는 지표상으로부 터의 높이를, Vertical Height at Midspan에는 경간 중심에서 지표상의 높이를 입력한다.

Skin effect correction에서 Thick/Diam에서는 전선의 두께/직경을 입 력한다. 다도체를 모델링하기 위하여 Bundled conductor를 체크하고, Number of conductors in bundle에는 소도체의 수, spacing은 소도체 사이의 간격, Angular position은 소도체의 기하학적 위치를 표현하기 위한 각을 입력한다. 이 때, 주의할 점은 Additional data for wire에서 각 상의 번호를 선택하여 각 상별로 개별적으로 입력하여야 한다는 것 이다. 선로 모델(FD 모델), 선로 길이를 입력한 후 실행하면 punch 파 일이 생성된다. 이렇게 생성된 punch 파일을 FD m-phase (주파수 의존 모델) 소자에서 Load 함으로서 765kV 선로를 모델링 할 수 있다.

		Number o	of conductors (wires) ⁸			
Wire	Phase Number	DC resistance (Ohm/km)	Outside diameter (cm)	Horizontal distance [m]	Vertical Heigth at tower [m]	Vertical Heigth at Midspan (m	
1	0	0.2	1.85	15.91	99.12	83.12	
2	0	0.2	1.85	-15.91	99.12	83.12	
3	1	0.059	3.042	13.94	90.19	76.79	-11
4	2	0.059	3.042	14.44	71.68	58.27	-11
5	3	0.059	3.042	14.94	53.16	39.76	-12
т ы	nick/Diam	0.333	_				
	nick/Diam one olid conduct alloway Weo	0.333	_				

3.2 시뮬레이션

3.2.1 시뮬레이션 조건

선로가압에 영향을 미칠 수 있는 요소에는 전압의 크기, 선로의 길이, 부하, 송전용량, 선로의 연가여부, 피뢰기, 포획전하, closing resistor, point-on-wave-closing, pole-closing-span, 차단기 pre-strike 등이 있다 [2]. 이러한 조건 중 본 논문에서는 선로의 길이와 송전용량을 변화시키 면서 모의하였다. 또한, 가압단은 신서산S/S~신안성S/S #1 T/L의 신서 산 S/S측을 투입하는 것으로 하였으며, 나머지 선로는 운전중인 것으로 가정하였다. 그 외의 조건은 차단기는 ideal switch로 모델링함으로서 pre-strike를 무시하였고, closing resistor는 무시하였다. 또한, 포획전하 는 0으로, 선로는 비연가로 모델링하였고, 피뢰기는 존재하고, 부하량은 3000MVA, 3상 동시투입, 투입위상각으로 90도로 모델링하였다.

<표 2> 시뮬레이션 조건

선로의길이	송전용량
(1) 45.8km	(1) 3672MVA
(2) 91.6km	(2) 4284MVA
(3) 137.4km	(3) 4896MVA

3.2.2 시뮬레이션 결과

현재의 실계통과 가장 유사한 경우인 선로길이 137.4km(신서산 S/S~ 신안성 S/S), 전원용량 4284MVA(당진T/P 7기), 부하 3000MVA, 투입 위상각이 90도의 조건(A상기준)에서 신서산 S/S측 선로 편단가압 시, 각 모선 및 가압선로의 개방단에서의 전압은 다음 그림 4와 같다.

<그림 4> 실계통과 동일한 조건에서의 편단가압 모의 결과

각 위치에서의 시뮬레이션 결과를 요약하면 다음 표 3과 같다. 가압선 로는 1.98p.u.까지 상승하였으며, 기존 운전중인 선로 중 신서산S/S의 A 상에서 가압이전에 비하여 0.43p.u. 정도가 상승하여 전압상승이 가장 큰 것을 알 수 있다. 가압이후 정상상태에서 역시 신서산 S/S의 A상이 가압이전에 비하여 0.005p.u. 정도의 전압이 상승하여 전압상승이 가장 크며, 그 다음으로 신안성 S/S, 당진 T/P 순으로 가압이전에 비하여 전 압이 상승한 것을 알 수 있다. 모든 선로에서 가압이후의 과도기간이 동 일한 것을 알 수 있다. 또한, 선로의 가압이전에 운전중인 선로로 인하 여 유도전압이 발생하는데, B상이 가장 작으며, A상과 C상의 값은 유사 한 것을 확인할 수 있다.

<표 3> 선로편단가압 시 모의결과

			7	가압이전	기시 가 기기] 기이 비스키()			أمات	
				(p.u.)	가압이우 최내		자이			
		A상	0	.998647	1.	0	.191173			
당진T/	/P측	B상	0	.998448	1.	0	.003232			
		C상	0	.998462	1.	0	.004558			
신서산S/S측		A상	0	.989177	1.	0	422583			
		B상	0	.985048	1.	1.02690				
		C상	0.991708		1.05630				.064952	
			0	.869079	0.973417				0.104338	
신안성	5/S측	B상	0	.920103	1.12493				0.204827	
		C상	0	.938334	0.9		0	0.05415		
		A상			1.99027					
가압신	친로	B상			1.38321					
		C상			1.40579					
	가압이		전	가압이후	정상상태에서의	-1 -1	과도기간		유도전압	
		(p.u.)		전	압(p.u.)	자이	(s)		(V)	
다기	A상	0.998647		0.998938		0.000291	0.0708			
· 경선 · ㅠ/D츠	B상	0.998448		0.998687		0.000239	0.0708			
1/P=	C상	0.998462		0.998718		0.000256	0.0708			
시서사	A상	0.989177		0.994385		0.005208	0.0708			
C/C×	B상	0.9850	48	0.	989160	0.004112	0.0708			
5/57	C상	0.99170	08	0.	996131	0.004423	0.0708			
시아서	A상	0.8690	79	0.	873429	0.0044	0.0708			
しし0 c/cえ	B상	0.9201	03	0.	923245	0.003142	0.070	8		
5/57	C상	0.9383	34	0.943128		0.004794	0.070	8		
가아	A상						0.070	8	37187	
서로	B상						0.070	8	14391	
신도	C상						0.070	8	40195	

3.2.3 시뮬레이션 결과분석

표 2의 시뮬레이션 조건에 대한 시뮬레이션 결과를 요약하면 다음과 같다.

- 가. 가압선로의 선로길이가 동일한 경우 각 모선에서의 전압상승은 전원 용량의 변화에 따라 일정한 경향이 존재하지 않으며 각 상에서 차이 발생한다.
- 나. 가압선로의 선로길이가 동일한 경우 가압선로에서의 전압상승은 전 원용량이 클수록 증가한다.
- 다. 전원용량이 동일한 경우 선로길이 증가에 따라 최대전압상승치에 대 하여 각 모선 및 각 상에서 일정한 경향이 존재하지 않으며 각 상별 로 그 크기의 차이 발생한다. 이것은 선로 가압 순간의 각 상의 위 상각 및 특성 임피던스, 전파속도가 다르기 때문에 진행파로 인한 전압상승치가 달라지기 때문이다.
- 라. 가압선로는 선로길이가 증가함에 따라 전압상승이 증가하는 경향이 있다.
- 마. 각 모선에서 선로의 가압이후 정상상태의 전압은 가압선로의 길이에 따라 선형적으로 증가하며, 전원용량이 클수록 단위길이당 전압상승 률은 감소한다.
- 바. 가압이전 유도전압은 기하학적 위치상 가운데인 B상이 가장 작다.
- 사. 전원용량이 클수록 유도전압은 증가한다.
- 아. 가압 이후의 과도기간은 선로길이가 증가함에 따라 증가하며, 전원
 용량과 관계없이 동일하다.

4.결 론

본 논문에서는 765kV 선로 편단가압 시 기존 운전중인 선로에 미치 는 영향에 대하여 분석하였다. 선로길이 및 송전용량에 따라 전압상승이 달라질 수 있음을 확인하였다. 기존 운전중인 선로에서는 진행파로 인하 여 선로길이 및 전원용량 변화에 따라 일정한 경향이 나타나지 않으며, 가압선로에서는 선로길이가 증가하고, 전원용량이 커질수록 전압상승이 커지는 것을 확인할 수 있었다. 가압이후 과도기간은 모든 조건에서 동 일하고, 가압이전 유도전압은 B상이 가장 작은 것 또한 알 수 있었다. 향 후 더욱 다양한 조건에 대한 정확한 분석을 함으로서, 전력설비 신설 시 발생하는 과도현상을 감소시킬 수 있을 것이다.

[참 고 문 헌]

- 한국전력공사, "송전선 상시운전 시 통신선 유도전압 기준설정에 관 한 연구", 2005.
- [2] M.M.Adibi, R.W.Alexander, D.P.Milanicz, "ENERGIZING HIGH AND EXTRA-HIGH VOLTAGES LINES DURING RESTORATION", IEEE Trans. on Power Systems, Vol. 14, No. 3, pp. 1121–1126, August, 1999.