발전기 및 주변압기 연계계통의 송전선로 과전압 발생시 제어회로 모델링 및 분석

여상민	
성균관대학교	

로에 미치는 영향을 모의하고, 분석하였다.

서훈철 기초전력연구원 유영식 조범섭 한국전력거래소

Modeling of Control Circuit by Overvoltage in Transmission Lines

S.M. Yeo	H.C. Seo	C.H. Kim	Y.S. Yoo B.S. Cho
Sungkyunkwan University	KESRI	Sungkyunkwan University	KPX

Abstract - 전력계통은 송전선로, 발전기, 변압기 등의 다양한 요소들 로 구성된다. 이러한 전력계통 내에서 스위칭 또는 낙뢰 등에 의해 과도 현상이 발생할 경우, 고려해야 할 정도의 과전압이 발생하며, 이의 분석 은 매우 중요하다. 본 논문에서는 전력계통 과도해석 프로그램인 EMTP-RV를 사용하여 발전기와 주변압기 연계 계통을 모델링하고, 계 통 내에서 발생하는 과전압을 모의하였다. 또한 발생한 과전압이 제어회

1. 서 론

전력계통은 발전소, 변전소, 송전선로, 각종 부하들과 같은 다양한 요 소들로 구성되어 있다. 이러한 전력계통을 설계하는데 있어 중요한 것은 과전압에 대한 절연 요구사항의 고려이며, 개폐, 뇌격 등의 과도현상에 의한 과전압이 고려되어야 한다. 과도현상에 의한 과전압의 최대치는 일 반적으로 정상적인 운전전압을 초과한다. 대부분의 과도현상의 과전압이 짧은 시간동안 발생하지만, 이러한 과전압은 과도시간에서 회로 성분들 및 전기기기에 비정상적인 전압에 의한 매우 큰 스트레스를 주며, 섬락 또는 절연파괴를 가져오기도 한다. 섬락은 보통 보호장치들의 트립에 기 인한 일시적인 정전을 야기하고, 절연파괴는 일반적으로 영구적인 기기 손상을 가져온다[1].

GIS(Gas Insulated Substation)는 변전소의 크기 감소, 유지보수의 용 이함, 훌륭한 환경적 적응성 등의 장점에 의해 수년간 확장되어왔다. 그 러나 이러한 GIS내에서 단로기나 차단기들이 동작할 때, 과도현상에 의 한 과전압이 발생하며. 일반적으로 약 4~100ns의 매우 짧은 상승 시간 을 가지며, 1~50MHz의 범위를 갖는 주파수로 진동하고, 일반적으로 선 전압에 대해 1.5~2.0pu의 범위의 크기를 가지며, 심각한 경우 2.5pu의 높은 값을 가질 수도 있다. VFTO의 크기는 스위칭 위치는 물론 모선에 서의 포획전하의 크기, 변전소의 설비 배치 등에 영향을 받는다[2.3].

또한 뇌 과전압은 송전선로에서의 철탑 절연의 차폐 실패나 역섬락에 의해 발생된다. 낙뢰가 역섬락을 일으키는 인입 선로의 차폐선이나 인근 의 철탑을 치게 되면, 뇌의 결과로 나오는 뇌 서지는 변전소에 들어가 고, 변전소 layout에 의존하여 내부로 전파된다. 변전소 내의 불연속 지 점, 차단기/스위치의 상태(open/close), 피뢰기의 위치에 따라 뇌 과전압 의 영향이 달라지기 때문에 이러한 사항들은 변전소에서 과전압 특성에 대해 특히 중요하다[4,5].

이와 같은 뇌 과전압이나 VFTO 등은 전력계통 내에서 매우 중요한 고려사항이다. 특히, 발전기와 주변압기 연계 계통의 경우, 송전선로 또 는 GIS 설비에서 발생한 과도현상에 의한 과전압이 차단기, 단로기 등 을 경유하여 주변압기로 전달되며, 주변압기 이후의 발전기 단자전압에 서도 과전압이 관찰된다. 이 과전압은 발전기 이후의 보조변압기, AC/DC 정류 회로, DC 전원 계통 등에도 영향을 줄 수 있다.

2. 전력계통의 과전압[1,5]

2.1 과전압의 분류

전력계통에서 발생하는 과전압은 시간 영역과 발생 원인에 따라 크게 세 가지로 분류해볼 수 있다.

① 개폐 과전압 ② 뇌 과전압 ③ 일시 과전압

2.2 개폐 과전압

전력계통에는 차단기, 단로기 등 다양한 종류의 스위치가 설치되어 있다. 이러한 스위치들의 개폐조작 순간에 과도적인 과전압이 발생할 수 있는데 이 과전압을 개폐서지라 하며 상용 주파수의 수 사이클(수십 ms) 이하의 수십 µs 정도의 시간 영역(주파수: 수백 Hz ~ 수십 kHz) 에서 발생한다. 이러한 개폐서지는 스위치의 종류, 회로조건, 차단전류 등에 의해 다르게 나타나며, 기본적으로 차단기를 투입할 때의 투입서지 (closing surge)와 개방할 때의 차단서지(clearing surge)로 분류된다.

2.3 뇌 과전압

뇌 과전압(Lightning Overvoltage)은 뇌 방전(lightning discharge)에 의해 발생된다. 뇌격에 의해 0.1µs ~ 100µs 정도의 시간 영역(주파수: 100kHz ~ 10MHz 정도)에서 발생하는 과도 현상(뇌 서지)에 의해 생기 는 과전압이다. 각종 과전압 중에서 최대이고, 절연 설계상 가장 중요한 것이다.

2.4 일시 과전압

상용 주파수의 수 사이클(수십 ms) 이상의 시간 영역(주파수: 수십 Hz 이하)에서의 과도적 현상에 의해 발생하는 과전압이며 어떤 시스템 조건에 의해 연유된다. 과전압치는 작지만 개폐 과전압 뿐만 아니라 뇌 과전압보다 비교적 훨씬 긴 지속기간을 갖는다.

3. 시뮬레이션 및 결과

3.1 대상 계통

본 논문에서는 발전기 및 주변압기 연계 계통에 대해 삼천포 화력발 전소를 대상으로 하여 모델링하였다. 삼천포 화력 발전소에 대한 간략한 단선도 및 설비 정수들은 다음 그림 1 및 표 1과 같다.

<그림 1> 삼천포 화력발전소 단선도

<표 1> 삼천포 화력발전소 설비 정수

(1) 선로 정수

	0.1						
선로	선로명 정상분		-(Z1)	영상분(Z		's) 긍장	
삼 해	삼 해#1,2 0.1269+j2.2006		2.2006	1.0443+j6.4923		86.029	
삼천포	삼천포#1,2 0.0908+j1.5752		1.5752	0.7542+j4.5591		61.589	
신고성	#1,2	0.0001+	0.0000	0.0001+j0.0000		0000	0.0656
(2) 발전	(2) 발전기 정수						
호기	단자전압(kV)		용량(MVA)		관성정수(kW×sec/kVA)		c/kVA)
#1, 2	#1, 2 22		660		3.141		
#3, 4	#3, 4 22		660		3.14		
#5, 6	#5, 6 22		612		3.4		
(3) 변압기 정수							
Bank번호 정격전입		압(kV) 용량(N		MVA)	임피던	스(pu)	
#1,	#1, 2 21/345		630		0.1377		
#3,	#3, 4 21/345		660.8		0.1361		
#5,	#5, 6 20.9/345		610.4		0.1	685	

송전선로는 선로 길이에 따라 신고성 #1, 2 T/L은 PI등가 선로 모델 로 모델링하였으며, 삼천포 #1, 2 T/L과 삼해 #1, 2 T/L은 주파수 독립 분포정수 모델을 사용하여 모델링하였다. GIS 부분은 각종 서지에 의한 전압의 진행과 과전압 분석을 위해 다음 표 2에 나타낸 바와 같은 등가 모델을 사용하여 구현하였다[2,4,5].

다음 그림 2는 차단기의 등가 모델을 EMTP-RV에서 구현한 것으로, 표 2에서 제시한 바와 같이 Open/Close 상태에 따라 서로 다른 형태로 구현하였으며, 이와 같은 등가모델을 그림 3과 같이 EMTP-RV의 Mask Script 기능을 사용하여 Block으로 설정하였다. 그림 3(b)는 Block 내의 각종 소자에 대한 파라미터 값을 입력하는 화면이다.

<표 2> GIS 설비별 등가 모델

Component	Equivalent Model		
Bus bar	송전선로	르 모델(비연가)	
Circuit Breaker	Open	두개의 송전선로 모델+대지간 Capacitance	
		+ 직렬로 연결된 Resistance+Capacitance	
	Close	세개의 송전선로 모델 + 대지간 Capacitance	
Disconnector	Open	두개의 송전선로 모델 + 직렬로 연결된 Capacitance	
Switch		+ 대지간 Capacitance	
	Close	세개의 송전선로 모델 + 대지간 Capacitance	
Surge Arrester	대지간	Capacitance(뇌서지 분석 시에는 비선형 소자 등 이용)	
Earth Switch	대지간	Capacitance	

<그림 3> EMTP-RV를 이용해 구현된 차단기 등가 모델

그림 2, 3과 같은 설비 Block 들을 사용하여 다음 그림 4와 같이 모델 계통의 GIS 부분을 구현하였다.

다음 그림 5는 DC 전원 및 제어회로 부분을 모델링한 것이다. DC 전 원 계통은 125VDC와 24VDC의 정류회로로 구성하였으며, 제어 회로는 EMTP-RV에 내장되어 있는 TACS Type 51 relay 소자를 이용하여 모 델링하였다.

<그림 5> DC 전원 계통 및 제어회로 부분

3.2 시뮬레이션 및 결과

본 논문에서는 단로기 투입을 통해 모선을 가압할 때 발생하는 개폐 과전압을 모의하였다. 모의시간간격은 3ns로 하였으며, 전체 모의 시간 은 30us이다. 76BUS를 무압상태로 하기 위해 관련 차단기는 개방 상태 로 상정하고, 10us에 75-76DS를 투입하였다.

다음 그림 6은 단로기가 투입된 10us 시점에서 76BUS에서의 과전압 과형을 보이고 있으며, 투입하기 전에는 매우 작은 값의 충전 전압을 갖 고 있음을 볼 수 있다. 단로기 투입 후 발생한 과전압의 최대 크기는 약 1.7pu 정도인 것을 그래프를 통해 알 수 있다. 75-76DS의 투입에 의해 그림 6과 같이 발생한 개폐 과전압은 GIS 내부에서 진행파에 의해 각 설비로 전파된다. 다음 그림 7은 단로기 투입 후 #4 발전기 단자에서 나 타난 개폐서지 파형을 보이고 있다. 76BUS의 과전압에 비해 상대적으 로 작은 1.5pu 정도의 과전압을 보이고 있으나, 여전히 무시할 수 없는 큰 값인 것을 알 수 있다.

발전기 및 주변압기 연계 계통에서 과전압이 발생할 경우, 발전기 제 어회로의 전원부에도 과전압의 영향이 전달된다. 이는 제어회로의 오동 작을 발생할 수 있으며, 차단기의 잘못된 트립을 가져올 수 있게 된다. 이런 현상은 발전기 탈락에 의한 계통의 불안정과 같은 2차적인 현상을 가져올 수 있게 된다.

본 논문에서는 이러한 현상을 분석하기 위해 전자기 과도현상 해석 프로그램인 EMTP-RV를 사용하여 GIS와 주변압기, 발전기 등이 연계 된 계통을 모델링하고, 단로기 개폐에 의한 과전압 현상을 모의하여, 상 당한 크기의 과전압이 발생하고, GIS 내부를 통해 각 설비로 전파되는 것을 확인하였다. 이러한 고주파수 영역에서의 개폐 서지는 매우 짧은 순간에 발생하는 과전압이지만, 고주파수 영역에서 동작하는 많은 민감 한 전자장치들은 치명적인 영향을 받을 수 있다. 따라서, GIS에서의 단 로기 등의 조작에 의한 개폐서지에 대한 더욱 상세하고 정밀한 분석이 필요하며, 개폐서지에 의한 각종 장치들의 오동작에 대한 대책이 강구되 어야 할 것이다.

[참 고 문 헌]

[1] 한국전기연구원, "전력계통 과전압 발생원인 및 대책", pp. 93-142, 2004.

[2] V. Vinod Kumar, Joy Thomas M., M.S. Maidu, "Influence of Switching Conditions on the VFTO Magnitudes in a GIS", IEEE Trans. on Power Delivery, Vol. 16, No. 4, pp. 539–544, Oct., 2001

[3] Lu Tiechen, Zhang Bo, "Calculation of Very Fast Transient Overvoltages in GIS", 2005 IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific Dalian, China, pp. 1–5, 2005.
[4] Xuzhu Dong, Sebastian Rosado, Yilu Liu, Nien-Chung Wang, E-Leny Line, Tzong-Yih Guo, "Study of Abnormal Electrical Phenomena Effects on GSU Transformers", IEEE Trans. on Power Delivery, Vol. 18, No. 3, pp. 835-842, July, 2003.
[5] IEEE Working Group 15.08.09, "Tutorial on Modeling and

[5] IEEE Working Group 15.08.09, "Tutorial on Modeling and Analysis of System Transients using Digital Programs", IEEE PES Special Publication, 1998.