연료전지용 다상부스트 컨버터의 설계기법

최규영*, 강현수*, 장수진*, 이병국*, 원충연*, 이원용** 성균관대학교 정보통신공학부*, 에너지기술연구원 고분자연료전지연구단**

Design Consideration of Interleaved Converters for Fuel Cell Applications

Gyu-Yeong Choe*, Hyun-Soo Kang*, Su-Jin Jang*, Byoung-Kuk Lee*, Chung-Yuen Won*, Won-Yong Lee** *School of Information & Communication Engineering, Sungkyunkwan University, **Polymer Electrolyte Fuel Cell Research Center, Korea Institute Energy Research (KIER)

Abstract - 본 논문은 연료전지 발전시스템 승압용 다상부스트 컨버터 의 입력전류리플 크기를 수식화 하고 통류율 범위에 따른 다상부스트 컨버터의 상수 설계기법에 대해 제안한다. 제안된 다상부스트 컨버터는 평균전류제어를 적용하였으며 일반적인 부스트컨버터와 입력전류리플 크기, 출력전압리플 크기를 시뮬레이션을 통해 비교 측정하였다.

1. 서 론

다상부스트 컨버터는 N개의 부스트 컨버터가 병렬로 구성되어 있으며 스위칭 동작은 각각의 스위치 순(S₁, S₂, S₃...)으로 구동된다. PWM 신호 는 전체 주기의 1/N 만큼 시프트 되어 on된다. 다상부스트 컨버터는 병 렬로 구성된 컨버터의 스위칭 주기가 동일하고 각 상의 스위치가 일정 한 위상차를 가지기 때문에 단일 컨버터의 용량 감소 및 입/출력 리플 을 줄일 수 있는 장점을 가진다[1]-[3]. 다상부스트의 출력전압리플 크기 의 변동을 계산 하거나[4], 인덕터를 각각 쓰는 대신 하나의 코어에 변 압기의 형태로 사용하여 입력전류리플을 분석한 논문도 있다[5]. 하지만 입력전류리플과 출력전압리플의 크기를 이론적인 식으로 표현하기는 부 족한 면이 있다.

본 논문에서는 N개의 모듈로 구성된 부스트 컨버터의 입력전류리플 크기를 수식으로 정리 하였으며 다상부스트 컨버터의 통류율을 계산하 여 입력전류리플을 최소화 할 수 있는 컨버터 모듈 수를 선정하였다. 제 안한 다상부스트 컨버터와 일반적인 부스트 컨버터의 입력전류리플 크 기, 출력전압리플 크기를 비교하고 시뮬레이션으로 확인하였다.

2. 본 론

2.1 전류, 전압 리플크기

리플 크기를 분석하기 위해 다음과 같이 가정 하였다.

(1) L, C 내부저항은 이상적으로 영이다.

(2) 도선의 L, C 부유용량은 이상적으로 영이다.

(3) 스위치는 이상적이다.

그림 1은 3상 다상부스트 컨버터를 나타낸다. 스위칭 주기는 동일하며 일정한 위상차를 가진다. 한 상의 스위칭 주기는 T이고 ON 주기는 D 이다. 입력전류 주기는 전체 주기의 T/N 이고 τ 라 한다. τ 에서 ON주 기를 d 라 한다.

2.1.1 N상의 입력전류리플 크기

입력전류리플 크기는 전류의 상승/하강 기울기와 시간의 곱으로 표현 할 수 있다. 다상부스트 컨버터 입력전류리플의 기울기 개수는 다상부스 트 컨버터 상수와 동일하다.

<그림 1> 3상 다상부스트의 스위칭패턴, 인덕터전류, 입력전류파형

3상으로 구성된 다상부스트 컨버터의 입력전류리플 기울기 구간은 0<D<0.33, 0.34<D<0.66, 0.67<D<1로 표현할 수 있으며 상승할 때의 기 울기는 식(1), 하강할 때의 기울기는 식(2)로 표현할 수 있다.

$$\frac{di_L}{dt} = \frac{V_{in}}{L} \tag{1}$$

$$\frac{dt_L}{dt} = \frac{-Dv_{in}}{LD'} \tag{2}$$

각 구간을 모드 1, 2, 3 이라하고 기울기를 구하면 다음과 같다.

$$\frac{di_{in_m1}}{dt} = \frac{V_{in}}{L} + \frac{-2DV_{in}}{LD'} = \frac{V_{in}}{L} \left(1 - \frac{2D}{D'}\right) = \frac{V_{in}}{L} \left(\frac{1 - 3D}{D'}\right)$$
(3)

$$\frac{d\iota_{in_m2}}{dt} = \frac{V_{in}}{L} + \frac{-2DV_{in}}{LD'} = \frac{V_{in}}{L} \left(1 - \frac{2D}{D'}\right) = \frac{V_{in}}{L} \left(\frac{1 - 3D}{D'}\right)$$
(4)

$$\frac{di_{in_m3}}{dt} = \frac{2V_{in}}{L} + \frac{-DV_{in}}{LD'} = \frac{V_{in}}{L} \left(2 - \frac{D}{D'}\right) = \frac{V_{in}}{L} \left(\frac{2 - 3D}{D'}\right)$$
(5)

이와 같이 식 1~5를 이용하여 다상부스트 컨버터의 입력전류리플 크기 를 정리하면 표 1과 같다. 본 논문에서는 4상 다상부스트 컨버터까지 정 리하였다.

<표 1> 상수에 따른 입력전류리플 크기

	1상	2상	3상	4상
모드1	$\frac{V_{in}}{L}DT$	$\left \frac{V_{in}}{L}\left(\frac{1-2D}{D'}\right)\right \frac{T}{N}d$	$\left \frac{V_{in}}{L}\left(\frac{1-3D}{D'}\right)\right DT$	$\left \frac{V_{in}}{L}\left(\frac{1-4D}{D'}\right)\right DT$
모트2		$\left \frac{V_{in}}{L}\left(\frac{1-2D}{D'}\right)\right \frac{T}{N}d'$	$\left \frac{V_{in}}{L}\left(\frac{1-3D}{D'}\right)\right \frac{T}{N}d'$	$\left \frac{V_{in}}{L}\left(\frac{2-4D}{D'}\right)\right \frac{T}{N}d$
모트3			$\left \frac{V_{in}}{L}\left(\frac{2-3D}{D'}\right)\right D'T$	$\left \frac{V_{in}}{L}\left(\frac{3-4D}{D'}\right)\right \frac{T}{N}d$
모드4				$\left \frac{V_{in}}{L}\left(\frac{3-4D}{D'}\right)\right D'T$

2.1.2 N상의 출력전압리플 크기

출력전압리플은 캐패시터에 충/방전되는 출력전류 전하량에 의해 결 정된다. 출력전압 형태는 다양하지만 평균전하량은 동일하다. 그러므로 전하량을 계산할 때는 평균치를 사용해도 무방하다. 캐패시터에 축적될 1/2크기의 전하량은 인덕터 평균전류와 출력 평균전류의 차이고 그림 2 와 같다[6]. 전하량은 식(6)과 같이 표현된다.

$$Q = \left\{ (N_{off} + 1)I_{L,avg} - I_o \right\} d' \frac{T}{N} \quad \left(\because I_o = \frac{V_o}{R}, \ I_{L,avg} = \frac{V_o}{RD'N} \right)$$
(6)

여기서 I_o , $I_{L,avg}$ 는 출력전류와 인덕터 평균전류이다.

전하량을 계산하면 식(7)과 같다. 식(7)은 1/2배 전하량이므로 출력전압 리플크기는 식(8)과 같이 표현된다.

$$Q = \frac{TV_o dd'}{N^2 RD'}$$
(7)

<그림 2> 출력전압리플

2.2 설계기법

연료전지 출력에 따라 다상부스트 컨버터의 통류율은 결정된다. 결정 된 통류율과 그림 3~4를 비교하여 입력전류리플과 출력전압리플이 최 소인 병렬컨버터 상수를 선정해야 한다. 또한 스위치 개수를 고려하여 다상부스트 컨버터 상수를 결정한다. 그림 3과 4와 같이 통류율 0.25, 0.33, 0.5, 0.66, 0.75에서 리플을 저감할 수 있으며 통류율이 결정된 시스 템에서는 리플측면에서 큰 이득을 얻을 수 있다.

본 논문에서는 통류율이 0.2~0.6사이의 다상부스트 컨버터를 사용하였고 입력전류리플과 출력전압리플을 작게 할 수 있는 3상 다상부스트 컨버 터를 선정하였다. 물론 최소화 할려면 4상을 사용하여야겠지만 스위치의 개수가 늘고 인덕터의 추가로 시스템 크기가 커져서 사용하지 않았다.

2.3 전류분배제어

다상부스트 컨버터는 연료전지와 같이 대전류 출력특성을 갖는 시스 템에 적합하다. 다상부스트 컨버터는 병렬로 구성되어 있기 때문에 각 컨버터의 기생성분들로 인해 전류 불균형이 일어나게 된다. 따라서 본 논문에서는 평균전류제어기법을 적용하여 균등전류 분배제어를 하였다. 그림 5는 평균전류제어 블록도이다.

3. 시뮬레이션 결과

3상 다상부스트 컨버터의 입/출력 조건을 동일하게 하고 기생 저항분 을 고려하여 시뮬레이션 하였다. 본 논문에서 제안한 입력전류리플과 출 력전압리플의 크기 비교를 위해 L의 크기를 다르게 시뮬레이션 하였다. 그림 6은 일반적인 부스트 컨버터와 제안한 다상부스트 컨버터의 입력 전류리플 크기를 나타낸다.

입력전류리플 크기는 1상일 때 0.71[A], 3상일 때 0.22[A]로 3.3배 차이 가 있고 그림 3과 동일함을 시뮬레이션 파형을 통해 확인할 수 있으며 단상에 비해 주파수는 3배 증가하였다. 3개의 인덕터 값이 다르기 때문 에 입력전류리플 크기도 다르다.

단상에 비해 주파수는 3배이고 출력전압 리플크기는 1상일 때 0.2[V], 3 상일 때 0.01[V]로 그림 4와 비교하여 동일함을 알 수 있다.

4. 결 론

본 논문에서는 3상 다상부스트 컨버터의 입력전류리플과 출력전압리 플의 크기를 수식화 하였다. 수식을 바탕으로 다상부스트의 통류율 범위 에서 최소 리플을 가지고 스위치의 개수가 고려된 상수를 결정할 수 있 다. 또한 인덕터 크기의 불균형에 따라 입력전류리플 크기가 변함을 확 인하였다.

[참 고 문 헌]

[1] Miwa,B.A., Otten,D.M.,and Schlecht,M.F. "High effciency power factor correction using interleaving techniques" Proc. IEEE APEC'92, Boston,MA,USA, Vol.1, pp.557–568, 1992.

[2] C. Chang, and M.A. Knights, "Interleaving technique in distributed power conversion systems", IEEE Trans .Circuits Syst. Vol. 44, No. 8, pp. 728-734, August 1997.

[3] Zhang, M.T.; Jovanovic, M.M.; Lee, F.C, "Analysis and evaluation of interleaving techniques in forward converters", Power Electronics, IEEE Transactions on Volume 13, Issue 4, pp. 690 - 698, July 1998

[4] Dahono,P.A, Riyadi,S, Mudawari,A, and Haroen,Y, "Output ripple analysis of multiphase DC-DC converter", IEEE Power Electr and Drive Systems(PEDS), pp.626 - 631, 1999.

[5] Po-Wa Lee, Yim-Shu Lee, Cheng, D.K.W., Xiu-Cheng Liu, "Steady-state analysis of an interleaved boost converter with coupled inductors", IEEE Tran on, Vol. 47, Issue 4, pp.787-795, Aug. 2000.

[6] Shin, H.-B, Park, J.-G, Chung, S.-K, Lee, H.-W, Lipo, T.A, "Generalised steady-state analysis of multiphase interleaved boost converter with coupled inductors", IEE Electric Power Applications, Vol.152, Issue.3, pp.584 - 594, 6 May 2005.