비자나무(Torreya nucifera)의 부위별 생리활성에 관한 연구 대구한의대학교 한방생약자원학과

전호성, 이양숙, 주은영, <u>김남우</u>*

A Physiological Activities According to Parts of the Torreya nucifera

Department of herbal biotechnology, Deagu Haany University Ho-Sung Jeon, Yang-Suk Lee, Eun-young Joo, Nam-Woo Kim*

Objectives

Torreya nucifera is evergreen of Taxaceae. T. nucifera has long been utilized It has also been utilized as a medicinal plant, and the fruit, leaves, and roots have been traditionally employed in China as a treatment for hemorrhoids, insecticide, trichosis and stomach. In the present study, we analyzed the physiological activity of a water extracts from seeds, leaves, stems of this plant.

Materials and Methods

Materials

T. nucifera seeds ("Vi Za") used oriental medical market in July, The leaves and stems were collected in August 2006, at the Kyongnam NamHea.

· Extraction and measurement

T. nucifera was extracted three times in a reflux extractor for 3 hours, each 1,600 ml of distilled water. The solution was filtered and concentrated using a rotary vacuum evaporator and freeze-dried. And it used electron donating ability (EDA), superoxide dismutase (SOD)-like activity, nitrite-scavenging ability (NSA), xanthine oxidase inhibition and tyrosinase inhibition.

Results

According to the result of the measurement of EDA, in the $100 \, \mu\text{g/ml}$ of the liquid extract of the *T. nucifera* seeds, EDA showed the highest value of 98.72%. The extract decreased with an increment of extract concentration. At the result of the measurement of SOD-like activity, in the $2,000 \, \mu\text{g/ml}$, the leaves were the highest value of 14.38%. At the result of the measurement of NSA, in the pH 1.2, $3,000 \, \mu\text{g/ml}$, the leaves were 96.65% that was higher then both 95.69% in seeds and 85.64% in stems. At pH 3.0 was also the highest 92.27% in seeds. Xanthine oxidase inhibition ware stems 94.55%, seeds 88.89% and leaves 87.76%. Tyrosinase inhibition showed the value of seeds(29.63%) but stems and leaves has not activated.

^{*}주저자연락처(Corresponding author): Nam-Woo Kim E-mail: tree@dhu.ac.kr Tel: 053-819-1438

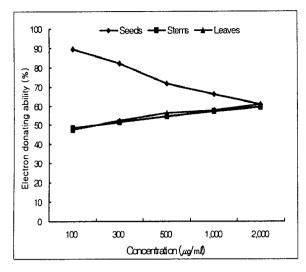


Fig. 1. Electron donating ability of the extracts from *T. nucifera*.

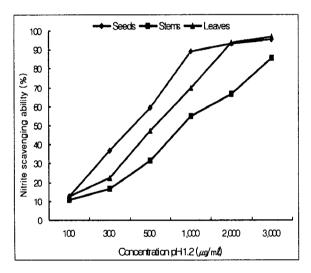


Fig. 3. Nitrite scavenging ability of the extracts from *T. nucifera* at pH 1.2

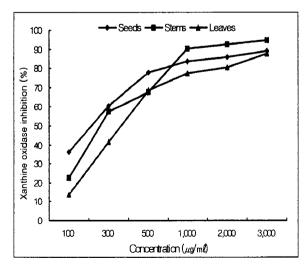


Fig. 5. Xanthine oxidase inhibition of the extracts from *T. nucifera*.

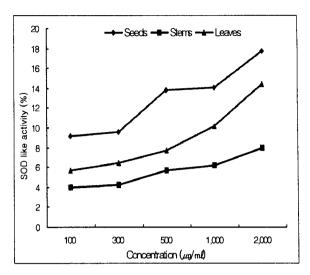


Fig. 2. Superoxide dismutase-like activity of the extracts from *T. nucifera*.

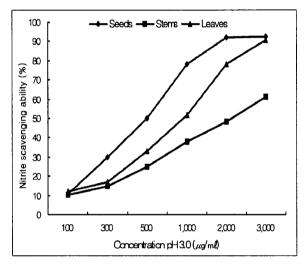


Fig. 4. Nitrite scavenging ability of the extracts from *T. nucifera* at pH 3.0.

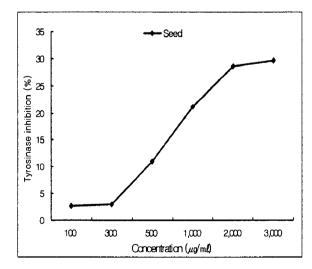


Fig. 6. Tyrosinase inhibition of the seeds extract from *T. nucifera*.