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Abstract 
 
 The radio signal in GNSS was intentionally designed with two frequencies in order to combat the dispersion error 
caused by trans-ionospheric propagation. By measuring the path delay independently at the two, widely spaced GPS 
frequencies, L1 & L2, the TEC along the path from satellite to receiver can be measured directly. The issue with dual 
frequency measurement of the ionosphere is the calibration of L1/L2 interfrequency biases. L1/L2 interfrequency 
biases are generated because physical electric signal paths of L1 and L2 circuits are different from each other for both 
satellites and receiver. Conventionally L1/L2 interfrequency bias is estimated and broadcasted by 2D ionospheric 
model. 
In this paper, we estimated IFB (interfrequency bias) by 2D & 3D ionospheric models including real time filter 
methods and compared the result of those and concluded the merit of 3D tomography model to recover the problem 
of 2D thin shell model. We confirmed our conclusion by experimental data. 
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1. Introduction 
 
The Global Positioning System (GPS) is a relatively new tool 

for studying the ionosphere. This satellite system's original and 
continuing purpose is four dimensional radionavigation based on 
one way ranging. The radio signal was intentionally designed 
with two frequencies in order to combat the dispersion error 
caused by transionospheric propagation. For navigation the 
dispersion causes a nuisance delay in the range measurement. On 
the other hand the dual frequency ranging signal can probe the 
ionosphere if the transmitter and receiver are at known locations. 
Indeed GPS has become the most widely used sensor for 
ionospheric study. 

While the L-band (  -1575.42MHz and  -1227.6MHz) 
frequency selection for the GPS signal was largely political it has 
a great deal of technical merit in balancing propagation loss 
against refraction. L-band signals allow reception by antennas 
commensurate with hand-held receivers and yet the phase path is 
well approximated as a straight line which keeps the effects 
linear. 

One issue with dual frequency measurement of the ionosphere 
is the calibration of the dispersion within the 
antenna/cable/receiver. That is, the phase paths between the 
antenna and the correlation loops in the receiver are different. 
The difference corrupts the ionospheric measurements by 
introducing a bias. If this interfrequency bias (IFB) is not 
calibrated the receiver yields relative rather than absolute 
ionospheric measurements.  

There are two primary difficulties in calibrating a receiver's 
IFB. First the antenna/cable/receiver installation cannot be 
altered after calibration since that will change the IFB. This 
precludes a laboratory calibration. Second, the IFB has a first 
order temperature dependence meaning that it is time varying 
when not under climate control. Previous work in the literature 
has neglected one or both of these complications. Here an 
adaptive filter is designed and implemented for estimating the 
IFB directly from the receiver's measurements of the GPS signals. 
The technique is general in that it will accept prior estimates if 

available and it produces estimates for any number of receivers 
inputting measurements. In fact the procedure improves with the 
number of receivers providing measurements.  

Beginning with the index of refraction in a plasma the 
ionospheric measurements are derived in terms of the GPS 
observables available from the receiver. Given a measurement 
equation, the IFB calibration problem is cast in state space. Next 
section describes the real-time Kalman filter for implementation. 
The final section contains the output results and a comparison of 
the performance with 2D & 3D model. The limitation of 2D 
model and the merit of 3D model will be explained. 

 
2. Paper Preparation 
 
2.1 2D Modelling assumptions and inter-frequency bias 

 
We have used Klobuchar’s assumptions in our ionospheric 

time-delay model (Klobuchar, 1987). Figure 1 shows these 
assumptions;  

 

 
Figure 1. 2D Ionospheric time-delay modelling assumptions.  
 
The ionosphere is assumed to be concentrated at the 

Ionospheric Pierce Point (IPP) and its average height (hiono) is 
350 km~450km from the ground. This is the key concept of the 
2D ionospheric model. The real delay of the GPS signal is a slant 
ionospheric time delay, but this is not appropriate for the 2D 
model because it varies according to satellite elevation angle; 
hence, the vertical ionospheric time delay should be used. 
Vertical and slant ionospheric time delays are related by an 



obliquity factor: Is =F x Iv , which is only a function of the 
satellite elevation angle: F = F(θ) (Qiu et al., 1994). 

As ionosphere activity is dominated by local time and 
geomagnetic latitude, the ionospheric time-delay model should 
be expressed in the coordinate of local time ( λ  ) and 
geomagnetic latitude (Φ) of the IPP. These can be calculated 
from GPS time, geographical latitude and longitude.  

In the implementation, the ionospheric vertical delay is 
modeled and expanded by k-th order spherical harmonics, i.e. 
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where nmP   is the legendre function. 
For determining ionospheric model, we must solve 

coefficients (
nmC  , 

nmS ) 
The measured slant ionospheric time delay (Is) contain L1/L2 

inter-frequency biases (Wilson and  Mannucci, 1994), which are 
generated because the electrical signal paths of the L1 and L2 
circuits differ from each other. The biases exist both at the GPS 
satellite (Ib_TX) and the receiver (Ib_RX )(Wilson and 
Mannucci, 1993). Thus, Is can be formulated as Equation (2). 

 νθ +−+⋅= TXbRXbvs IIFII __)(              (2) 

where ν   is the measurement noise. 
If we declare that coefficients (

nmC ,
nmS ) are unknown vector 

x   and Is  is measurement z, 

 ν+−+= TXbRXb IIxHz __                    (3) 

 
2.2 Ionospheric observation 
 
 The time delay of GPS radiowave propagating from 

transmitter to receiver through ionosphere is given by 
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where c is the speed of light, SV is the transmitter location, R 
is the receiver location, n is the index of refraction, and r is a four 
dimensional position vector. The effect of the ionosphere is 
captured in the index of refraction, n, which is a function of both 
radiowave frequency and position along the phase path. The full 
expression for the complex index of refraction in a plasma such 
as the ionosphere is given by the Appleton-Hartree equation. 
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N(r) is the local electric density of the plasma, e is the charge 
on an electron, 0ε   is the permittivity of free space, m is the 
mass of an electron, 

LB and 
TB   terms are the longitudinal and 

transverse components of the geomagnetic field, Hf  is the gyro 
(cyclotron) frequency and θ   is the angle between the 
geomagnetic field vector and wave vector. Typically the local 
plasma frequency in the ionosphere is around 10 MHz, gyro 

frequency is around 1 MHz, and the collision frequency is 
around 10 kHZ. So, the L-band approximation to the Appleton-
Hartree equation is 

2
1 Xn −≈                                        (6) 

This is comparatively simple and yet good to better than 1% 
error. By substituting (6) into (4), 
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If we apply equation (7) in L1,L2 and subtracting each other, 

we can get following equation. 
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Then. the total electron content (TEC) along the line of sight 

including IFB can be observed by dual frequency GPS receivers 
with the instantaneous code delay observation 
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Typical IFBs can be as large as 15(m) which is unacceptable 
considering the ionospheric delay ranges from 2 to 30(m). The 
IFB depends on the antenna, pre-amp, cable, RF filters in the 
receiver and even the environment (temperature primarily), and 
the IFB is unique to every receiver installation. 

 
2.3 3D ionospheric tomography and IFB 
 
The goal of ionospheric tomography is to find 3D function 

N(r). N(r) is the electron distribution function as latitude, 
longitude and height in ionosphere. N(r) consists of the tensor 
product of horizontal function (Spherical Harmonics Function) 
and radial function (Empirical Orthogonal Function) like 
equation (10). 
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Consequently, we must estimate coefficients (a, b) of those 
functions to solve function N(r). k is the number of EOF and l is 
the number of SHF terms. For example, if we use 3 EOF and 2nd 
order SHF, k=1~3 and l=1~9.  

 
 Putting equation (10) to (7), equation can be calculated like 

equation (11). (k=1~n, l=1~m) 
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The subscript i denotes each measurement. If we consider IFB 

and measurement noise, 
 [ ] iTXbRXbinmiii IIxHHHz ν+−+= __1211 L   (12) 

Accumulating p measurements, we cam make matrix equation 
(13). 
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where  Z  is the stacked vector of measurements TEC + IFB, 

xH  is the ionospheric model. Then, we can estimate x, IFBs 
and reconstruct ionosphere from basis functions with coefficients 
x. 

If the true electron density distribution, Ne(r), were known 
then the calibration would be easy. Of course there would then be 
no need to make ionospheric measurements. Although the 
ionosphere is a distributed medium it is a physical process with a 
great deal of spatial and temporal correlation which we can 
leverage against our bias calibration task. Assuming statistical 
independence of the IFBs on different reference stations, an 
adaptive noise cancellation scheme can be used to remove the 
ionosphere (i.e noise with respect to the calibration) and leave 
the IFB (i.e. signal we seek).  

In place of the true Ne(r) we posit a model of the ionosphere 
to capture its spatial and temporal correlation. The model is then 
filtered and subtracted from the TEC measurements to leave an 
estimate of the IFBs. Because all of the GPS signals received at 
the antenna from each satellite pass through the same signal path 
to the correlation loops, the IFB is constant across all 
measurements made at the same instant. This means that for M 
satellites in view of the receiver we have M noisy measurements 
of the same IFB, where the ionosphere is a correlated noise 
process.  

 
2.4 IFB estimation using KALMAN Filter 
 
This section provides an introduction to the Kalman filter 

method. The problem is to optimally update the solution to a 
linear least squares problem given time dependent observations 
and a prior model estimate of the solution. The unknowns, which 
in this case, represent the ionospheric electron density field and 
IFB, are stored in a state vector, x. Associated with the state is a 
covariance matrix, P, which is updated by the filter each iteration. 

We use two-state kinematic filter [Loomis,et al]. The first state 
is the ionospheric model coefficients x and the second state is the 
rate of x. We suppose that IFB states are constants in filter 
dynamics. 

State X = [ coefficients x | the rate of x | receiver 
IFB;i=1~TRS number | satellite IFB;j=1~SV number] 

The sequence of steps in updating the filter may be defined as 
follows: First the state vector, x, is projected into the future (the 
minus superscript implies prior estimates) 

 
                                               (14) 
 
For the method presented in this paper the matrices A and B 

are generated from prior model estimates of the electron density 
field 

The next stage in the update of the filter involves projecting 
the error covariance matrix 
 

                                               (15) 
 
The Q matrix defines the variance as being a constant fraction 

of an average of the background model and projected state 
estimates.  

Given a set of line integral observations, z, with covariance R, 

and path integrals defined by, H, the Kalman Gain is given by 
 
                                               (16) 
 

Finally, using the Kalman gain, the state vector and its 

covariance are updated 

 
 
 
                                               (17) 
 

3. Experiment 
 

3.1 Data 
 
The data used in this paper were obtained from Korean DGPS 

stations. For experiment, we selected 6 stations  (Socheng-do, 
Eocheng-do, Mara-do, Seoimal, Ulleng-do, Jeojin) for reference 
station and 1 station(Youngju) for user at July 16th, 2005 (24 
hours) and used IONEX value for satellite inter-frequency bias. 
We compare WADGPS errors in case of each algorithm (No IFB, 
2D IFB, 3D IFB). 
 

3.2 Result & analysis 
 
Figure 2 show WADGPS position error (2drms:2.8752) by no 

IFB correction and Figure 3 show WADGPS position error 
(2drms:0.9311)  by 2D model IFB correction value and Figure 
4 show WADGPS position error (2drms:0.6451) by 3D model 
IFB correction value. We can confirm that the estimated IFB 
value by 3D model reduce WADGPS error from results. 

 
Figure 2. WADGPS horizontal position error with No IFB 
correction 
 
 

 
Figure 3. WADGPS horizontal position error with 2D IFB 
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Figure 4. WADGPS horizontal position error with 3D IFB 
correction 
 
4. Conclusion 
 

In this paper, we estimated IFB (interfrequency bias) by 2D & 
3D ionospheric models including real time filter methods. 
Because 2D shell model would squash vertical variation into 
TEC values at a pre-determined shell height, it has some 
modelling error reducing accuracy. The IFB estimation of 3D 
tomography model can recover the problem of 2D thin shell 
model. We confirmed our conclusion by simulation and 
experimental data. 
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