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Abstract

For robust INS/GPS navigation system, an efficient multi-filter fusion technique is proposed. In the filtering for
nonlinear systems, the representative filter - EKF, and the alternative filters - RHKF filter, SPKF, etc. have individual
advantages and weak points. The key concept of the multi-filter fusion is the mergence of the strong points of the
filters. This paper fuses the 1IR type filter — EKF and the FIR type filter — RHKEF filter using the adaptive strategy.
The result of the fusion has several advantages over the EKF, and the RHKF filter. The advantages include the
robustness to the system uncertainty, temporary unknown bias, and so on. The multi-filter fusion technique is applied
to the tightly coupled INS/GPS navigation system and the performance is verified by simulation.
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1. Introduction

INS/GPS integrated system is the general navigation system
for seamless navigation. The research on the performance
enhancement of INS/GPS system has been carried out actively.
Especially, the integration filter is one of the important research
themes. Extended Kalman filter (EKF) is the representative filter
for nonlinear system such as INS and is a widely used filter in
many areas of filtering, estimation, prediction, control, tracking,
and many others. However, despite its superior practical
usefulness, this filter has several weak points. The estimation
error of the EKF is bounded in mean square under certain
conditions. These conditions include the requirements that the
initial estimation errors as well as the disturbing noise terms are
small enough, and there must not be modeling uncertainties in
the filter model [1]. The EKF may yield large error due to the
modeling uncertainties. The reason is that the EKF is an IIR
(Infinite Impulse Response) filter [2,3].

The weak points of the EKF can be overcome partially by
alternate filters such as RHKF (Receding Horizon Kalman FIR)
filter that has FIR (Finite Impulse Response) characteristics,
SPKF (Sigma Point Kalman Filter) that utilizes UT (Unscented
Transformation) concept, and so on [2~5]. Especially, the RHKF
filter has robustness to the modeling uncertainties and temporally
disturbing noise terms due to the FIR construction. However, the
convergence characteristics of the FIR filter are inferior to the
IIR filter. Therefore, tuning is somewhat difficult in the real
environment.

In this paper, an adaptive filter concept is used for fusion of
the advantages of these filters. In adaptive filter areas, there are
process noise covariance estimation methods by minimizing the
Frobenius norm using the filter residuals and by using MMAE
(Multiple Model Adaptive Estimation) [6], multiple model
fusion method using IMM (Interacting Multiple Model)
technique [7], and so on.

This paper proposes a multi-filter fusion technique. This
fusion technique has an important significance: 1IR filter(EKF)
and FIR filter(RHKEF filter) are fused for nonlinear systems. The
fusion probability is calculated using the residuals of the two
filters. Based on the probability, the outputs of the nonlinear

systems and the error covariance matrix of the filters are fused.
The nonlinear systems and the filters are updated using the fused
values. The final solution is calculated by combining the outputs
of the updated nonlinear systems using the fusion probability.
This fusion technique has the advantages of the IIR filter as well
as FIR filter.

The proposed fusion technique is applied to the tightly
coupled INS/GPS integrated system. When MEMS based INS is
utilized, the INS/GPS designed using the fusion technique has
robust characteristics to the un-modeled sensor error drift. The
performance of the fusion technique is verified by simulation
results.

2. Multi-Filter Fusion Technique

In order to use the optimal linear filter (Kalman filter) in a
nonlinear system, the nonlinear system/measurement models are
linearized and the error states are estimated. EKF updates the
nonlinear system using the estimated error sates. Because of the
linearization process, the certain condition must be satisfied to
stabilize the EKF [1]. In low-cost systems, however, modeling
uncertainties may be occurred during filter design due to the low-
quality sensors/system. This may cause the EKF to diverge.
RHKEF filter has been investigated to overcome this weak point.
Supposing full observability is satisfied at all times, the RHKF
filter can provide the robust solution against the modeling
uncertainties, temporally time-varying disturbances, etc. [2].
However, the primary condition, full observability, for the RHKF
filter may not be satisfied partially according to the application
models. This may cause instability of the system as well as filter.
On the other hand, the stability of the EKF can be remains for a
while even in the time period of unobservable due to the IIR
construction. In this paper, the 1IR type filter and the FIR type
filter are fused to combine the advantages of the two filters.

In the figure 1, f; () means nonlinear system functions. The
initialization for the multi-filter fusion is as follow:
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Figure 1. Structure of multi-filter fusion technique.
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where M is Markov transition matrix, m,, +m, =1, u is

mixing probability, n, +n, =1, and C is normalization factor.

The nonlinear systems are propagated at output periods of the
main sensors and the filters are updated after acquiring the
outputs of the sub sensors. The nonlinear systems are
compensated using the filter outputs. Then, the states of the
nonlinear systems and the error covariance matrices are fused
and redistributed. In order to do this process, the mode
probability is updated. The mode probability means the adaptive
fusion gain and is updated using the filter residuals. First, the
likelihood ratio is calculated.
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where ;; is the residual of j filter at time i, and S;; is

the residual covariance as follows:
rh.=z -1 (5)
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Then, the mode probability is updated using the calculated

likelihood ratio.
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In the mixing/redistribution part, the states of the nonlinear
systems, and the error covariance matrices are recalculated.
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where the mixing probability is calculated as follows:
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The redistributed states are feedback to the nonlinear systems
and the error covariance matrices are feedback to the each filter.
The equations (4) ~ (10) are iterated as filter process.
Finally, the output solution is calculated in the Data
Combination part using the error compensated solutions of the
nonlinear systems as follows:
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3. Application to Tightly Coupled INS/GPS

3.1 INS Mechanization Equations

INS mechanization equations are
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where q is a quaternion, the direction cosine matrix C,? from
body frame to navigation frame can be calculated using the
quaternion. V" :[VN Ve VT]T is a velocity vector in the
navigation frame, [L | h] isa position vector in the ECEF
frame. f° and @} are accelerometer assembly output and

gyro assembly output, respectively. @;
calculated as follows:
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where R, and R, are meridian and traverse radii of curvature
in the earth ellipsoid.
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where R, =6,378,137 is equator radius of the earth ellipsoid
and e=0.0818191908426 is eccentricity.

The g"=[0 0 g,] is the earth gravity vector in the
navigation frame.
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3.2 Tightly Coupled INS/GPS

For tightly coupled INS/GPS, the error model is derived using

the linear perturbation method.
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In order to make the measurement matrix, the chain rule is

used as follows:
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And measurement is calculated as
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Using (19) ~ (21), the EKF and the RHKEF filter for the tightly
coupled INS/GPS can be implemented. In order to apply the
multi-filter fusion technique to the tightly coupled INS/GPS, the
construction of the figure 1 is modified as figure 2. The sub
INS/GPS module 1 using the EKF and the sub INS/GPS module
2 using the RHKF filter are processed separately. Then mode
probability update and mixing/redistribution parts are carried out
to fuse the two sub modules. Finally, data combination part is
processed to generate the error compensated and fused
navigation solution.

4. Simulation and Results

In order to verify the performance of the proposed tightly
coupled INS/GPS integrated system using the multi-filter fusion
technique, simulation is carried out. GPS data used in this
simulation is generated using MATLAB Toolbox. It is assumed
that GPS errors except for thermal noise are compensated. The
horizon size of the RHKF filter is set by 10 seconds.

4.1 Case 1: Normal Case
The sensor error is modeled as random constant and the sensor

error model in the filters is set as random constant. The
simulation result is shown in figure 3.
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Figure 2. Structure of tightly coupled INS/GPS using the
multi-filter fusion technique.

Mode Probability Update

It can be shown that the proposed technique has smoothing
effect. The position error (a) and velocity error (b) of RHKF
filter are larger than that of EKF because the convergences of
RHKF filter is restricted in the horizon. The position and
velocity errors of the multi-filter fusion are smaller than EKF and
RHKEF filter. The azimuth error (c), sensor bias estimation errors
(d), (e), and clock bias estimation (f) of EKF decrease with time.
On the other hand, that of RHKF filter is bounded but is not
converged. The result of the multi-filter fusion converged with
time because the multi-filter fusion takes the strong points of the
filters. The mode probabilities (g) of the two filters converge to
0.5 in the time section of twice horizon size of the RHKF filter.
Then, the mode probability of EKF is slightly larger than that of
RHKEF filter because the error of EKF is smaller than that of
RHKEF filter in this case. In the normal case, therefore, the
performance of EKF is better than that of RHKF filter, and the
filter using the multi-filter fusion technique provides a good
solution because of the reflection of the merits of EKF.
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Figure 3. Simulation result of case 1.

4.2 Case 2: Model Uncertainty

The sensor error is modeled as random walk as follows:
Vi =Vi 1t Wy o Wy ~ N(O, (500ug)?)

w,; ~ N(0,(0.05° /s)?)

However, the sensor error model in the filters is set as random
constant. Namely there is model uncertainty. The simulation
result is shown in figure 4. In this case, the estimation errors in
EKF diverge with time due to the IIR feature. However, the
estimation errors of RHKF filter are bounded. This is the strong
point of the FIR filter. The filter using the proposed multi-filter
fusion technique merges the merits of the filters. Therefore, the
estimation errors of the multi-filter fusion are not diverged.
Moreover, it has smoothing effect. After time section of twice
horizon size of RHKF filter, it can be seen that the mode
probabilities are calculated favorable to RHKF filter.
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Figure 4. Simulation result of case 2.
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The two simulation results show that the filter using the
proposed multi-filter fusion technique provides a better solution
over EKF and RHKF filter irrespective of the model uncertainty.

5. Conclusion

A multi-filter fusion technique for merging of EKF and
RHKEF filter was introduced and an application filter for tightly
coupled INS/GPS integrated system was proposed. The proposed
multi-filter fusion technique has two meanings: fusion of
nonlinear filters and fusion of IIR filter and FIR filter. The
adaptive fusion probability is calculated using filter residuals and
then the filter outputs are merged based on the probability. The
filter designed by the multi-filter fusion technique provides a
better solution over the conventional stand-alone filter. The
performance of the filter was verified by simulation.

It can be expected that the proposed tightly coupled INS/GPS
integrated system can provide a good navigation solution even in
the case that the sensor error model can not be estimated exactly
in the MEMS-INS/GPS system.
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