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Abstract 
 
 This paper presents an adaptive neural network based controller and its application to Dynamic Positioning (DP) 
control system of ship. The proposed neural network based controller is developed for station-keeping and low-speed 
maneuvering control of ship. At first, the DP system configuration is described. And then, to validate the proposed DP 
system, computer simulations of station-keeping and low-speed maneuvering performance of a multi-purpose supply 
ship are presented under the influence of measurement noise, external disturbances such as sea current, wave, and 
wind. The simulations have shown the feasibility of the DP system in various maneuvering situations. 
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1. Introduction 
 

Dynamic Positioning (DP) systems for marine vessels are 
commonly the systems that have station-keeping and low-speed 
maneuvering functions by means of the ship propulsion system 
[1]. Since the 1960s, DP systems have been developed using 
conventional PID controllers in cascade with low pass and/or 
notch filters; model-based control utilizing stochastic optimal 
control theory and Kalman filtering techniques etc… These 
studies of conventional control methods and their later 
extensions and modifications proposed by numerous authors for 
DP systems are briefly mentioned in Fossen [1]. 
 

More lately DP systems utilizing modified Linear Quadratic 
Gaussian (LQG) feedback controller and a model reference 
feedforward controller [2]; nonlinear output feedback [3]; 
passive nonlinear observer based control [4] and [5]; nonlinear 
control based on robust observer [6]; nonlinear passive weather 
optimal positioning control (WOPC) system [7] have been 
developed. Recently, intelligent control techniques have been 
also applied to DP systems, such as [8] and [9]. 

 
In this paper, a hybrid neural adaptive control scheme which 

can perform station-keeping and low-speed maneuvering of ships 
is developed. A conventional PD-controller for nonlinear DP 
model (see [1], page 430) is modified and combined with the 
adaptive neural networks by adaptive interaction (ANNAI). This 
ANNAI controller is based on the work in [10] and [11], and 
developed for ship control by the authors in [12] and [13]. In the 
proposed hybrid neural adaptive control scheme, PD-controller 
provides an approximate control, and ANNAI controllers with 
on-line training ability are introduced to adaptively compensate 
for unknown bias term representing slowly-varying 
environmental disturbances and minimize positioning error (in 
station-keeping) or tracking error (in low-speed maneuvering). 

 
At first, the DP system configuration is described. And then, 

to validate the proposed DP system, computer simulations of 
station-keeping and low-speed maneuvering performance of a 
multi-purpose supply ship [4] are presented under the influence 

of measurement noise, external disturbances such as sea current, 
wave, and wind. 

 
 

2. Mathematical Model of Ships 
 
This section presents a brief mathematical model for dynamic 

positioning of ships based on [1] and [4]. 
 
 

2.1 Equations of Motion 
 
The earth-fixed position (x, y) and heading ψ of the vessel 

relative to an earth-fixed coordinate XEYEZE are expressed in 
vector form by Tyx ],,[ ψη = , and the vessel-fixed linear 

velocity vector is expressed by Trvu ],,[=ν . These three modes 
are referred to as the surge, sway and yaw modes of a ship. The 
origin of the vessel-fixed coordinate XYZ is located at the vessel 
center line in a distance xG from the center of gravity. The low 
frequency motion of DP ships in surge, sway and yaw can be 
described as follow: 

 
bJDM T )(ητνν +=+&              (1) 

νηη )(J=&                  (2) 
 
Here, T],,[ 321 ττττ =  is a control vector of forces and 

moment provided by the propulsion system. 33xM ℜ∈  is the 
inertia matrix including hydrodynamic added inertia, and 

33xD ℜ∈  is the damping matrix. Unmodeled external forces 
and moment due to wind, currents and waves are lumped 
together into an earth-fixed constant (or slowly-varying) bias 
term 3ℜ∈b , )(ηJ  is the transformation matrix between the 
earth-fixed coordinate and the vessel-fixed coordinate. The 
transformation matrix has the following form 
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where J(ψ) is nonsingular for all ψ and J-1(ψ) = JT(ψ). For 
further details of the equations of motion, see [1]. 

 
 

2.2 Bias Modeling 
 
A common model for the bias forces in surge, sway and yaw 

moment for marine vehicle control application is 
 

nbTb Ψ+−= −1& ,                 (4) 
 

where 3ℜ∈b  is a vector of bias forces and moment, n is a 
vector of zero-mean Gaussian white noise, T is a diagonal matrix 
of positive bias time constants and 33xℜ∈Ψ  is a diagonal 
matrix scaling the amplitude of n. This model can be used to 
describe slowly-varying environmental forces and moments due 
to 2nd order wave loads, ocean currents, wind and unmodeled 
dynamics. 
 
 
2.3 Wave Force Modeling 

 
Wave forces can be divided into 1st-order wave disturbances 

and 2nd-order wave drift forces. For the practical application to 
control system design, the 1st-order wave disturbances can be 
described by three harmonic oscillators with some damping. 
Linear 2nd order wave forces are generally expressed as 
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where T

wwww yx ],,[ ψη = , 6ℜ∈ξ , and 3ℜ∈w  is a zero 
means bounded disturbance vector and 
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Here oiω , iζ , and iσ  (i = 1, …, 3) are wave frequency, 

relative damping ratio and parameters related to wave intensity, 
respectively. For further details of the wave force modeling, see 
[1]. 

 
 

2.4 Measurement Systems 
 
For conventional ships, positions and yaw angles are usually 

measured by global positioning system (GPS) or hydroacoustic 
positioning reference (HPR) systems, and gyro compasses. 
However, for ship positioning systems the differential GPS is 
usually applied to reduce positioning errors. The measurement 

can be written as 
 

vy w ++= ηη                  (7) 
 

where 3ℜ∈v  is the zero mean Gaussian white measurement 
noise. It is assumed that the total position of the ship can be 
obtained by superposition of the position and direction of the 
ship and the wave displacements. 

 
 

3. The Design of Dynamic Positioning System 
 
This section presents a new DP system based on the ANNAI 

controller (see [12] and [13]) with two functions: position-
keeping and low-speed maneuvering. The proposed DP system 
does not require the necessity of estimating the bias term so the 
estimation error can be removed. Employing the on-line training 
ability of the ANNAI, unknown bias term representing slowly-
varying environmental disturbances can be compensated for and 
positioning error (in station-keeping) or tracking error (in low-
speed maneuvering) can be minimized. 

 

 
 
Figure 1. Configuration of the proposed hybrid neural 

adaptive DP system. 
 
 
Figure 1 shows the configuration of the proposed DP system, 

where hybrid neural adaptive controller consists of a PD 
controller (which has gains Kp and Kd) and three adaptive neural 
networks ANNAI1, ANNAI2, ANNAI3. Principally, the 
difference between the proposed DP system in this study with 
that of previous studies is: the ANNAI controller is introduced to 
obtain adaptability in controlling nonlinear ships with unmodeled 
dynamics and external disturbances. 

 
 

3.1 Position-keeping Control 
 
Consider the nonlinear DP model 
 

νηη )(J=&                   (8) 

bJDM T )(ητνν +=+&               (9) 

wy ηη +=                  (10) 
 
Instead of using integral action to compensate for b , in [1] a 

PD-controller 
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de ηη −=                  (12) 
 

was used under the assumption that b  is known (perfect 
compensation) and dη  is the desired states, 0=dη& . However, 
it is impossible to measure b , so in their study, a state observer 
which can generate estimates of η , ν  and b  and at the same 
time provide wave filtering was needed. The controller using the 
estimates states η̂ , ν̂ , and b̂  is 

 
bJKeKJ T

dp
T ˆ)(ˆˆ)( ψνψτ −−−= ,        (13) 

de ηη −= ˆˆ                   (14) 
 
In this paper we propose a hybrid neural adaptive control 

scheme based on (13) and (14) as follow 
 

ndp
T OKeKJ −−−= νψτ ˆˆ)( ,          (15) 

de ηη −= ˆˆ                   (16) 
 

where ]ˆ)([ eJFO T
n ψ= , 3ℜ∈nO  is outputs of three ANNAI 

controllers which are combined with the PD-controller. The 
estimates states η̂  and ν̂  are obtained with proper wave 
filters. The selected ANNAI controllers are multi-layer 
feedforward neural networks with one hidden layer. Let 

eJX T ˆ)(ψ=  be the input vector of ANNAI controllers, the cost 
functions for the ANNAI controllers have the following form 
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where iρ , iλ , iκ  (i = 1, …,3) are positive constants. 

 
The adaptation law for the hidden layer of the ANNAI as in 

[12] can be written as 
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where )(⋅σ  is a sigmoidal activation function and 
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where hid

iθ  is the threshold values of the hidden layers. For the 
output layer, the adaptation law has the following form 
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Here, iγ  are learning rates of the ANNAI. In this study, 

output neurons have tangent sigmoidal activation function, so 
that 
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where out

iθ  is the threshold values of the output layers. 

To summarize, the ANNAI controllers can minimize the cost 
function (17) using adaptation laws (18) and (21). Once the 
outputs nO  of the ANNAI controllers are determined, the 
control input of the DP system is determined by (15). Using the 
control scheme described in (15) and (16), unknown bias term 
representing slowly-varying environmental disturbances can be 
compensated for and positioning error can be minimized. Further 
details of the ANNAI adaptation laws can be found in [12] and 
[13]. 

 
 

3.2 Low-speed Maneuvering Control 
 
This subsection presents low-speed maneuvering control 

function of the DP control system. To maneuver the ship the 
Reference Point method is used. At every control cycle, the ship 
is stabilized on a moving Reference Point R(xd, yd) (Figure 2) at a 
desired heading ψd. In this case the desired states vector is 

T
dddd yx ],,[ ψη = . Suppose that we want to make a certain 

point H(xH, yH) of the ship (as shown in Figure 2) follow the 
desired track (be stabilized at R). If T

HHH yx ],,[ ψη = is the 
ship states at H, the error vector is now expressed as 

 
dHe ηη −=                  (24) 

 

Figure 2. General framework of low-speed maneuvering. 
 

In Figure 2, position of H in the vessel-fixed reference 
coordinate is determined by xΔ  and yΔ . The position of H in 
the earth-fixed reference coordinate can be easily obtained as 
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where T

yxHd ]0,,[ ΔΔ= . From (15), (24), and (25) the hybrid 
neural adaptive control scheme to stabilize H at the reference 
point R is proposed as 
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Here, the adaptation laws of the ANNAI controllers are 

similarly determined as in subsection 3.1. Using the control 

X 

Y 

YE

ψ 

(x,y) 

XE

R 

H 

yd 

xd 

yH 

xH ze 

Δx 

Δy 



 4

scheme expressed in (26), (27), and (28), unknown bias term 
representing slowly-varying environmental disturbances can be 
compensated for and tracking error can be minimized. 

 
In order to make the ship follow the desired track, we propose 

an algorithm to move the reference point R along the desired 
track. Let ze be the distance HR, one can have 

 
22 )()( dHdHe yyxxz −+−=         (29) 

 
Based on the work of Do, Jiang and Pan in [14], the speed u of 

R is chosen as 
 

ψχχχχψ Δ−−−−−=Δ 4302 )1(),,( )(
1

* eeeuztu eztt
e     (30) 

 

where additional term ψχ Δ− 4e  is added, and 0* ≠u , iχ > 0, 
i = 1, …4, 1χ < 1, and dψψψ −=Δ . 

 
The choice of u(t,ze) in (30) has the following desired features: 

when the tracking error ze and/or heading error Δψ are large, the 
reference point R will wait for the ship position and her heading 
to reach to the set point dη ; when ze and Δψ are small, the 
reference point R will move along the desired track at the speed 
closed to *u  and the ship follows it within the specified look 
ahead distance while maintaining the desired heading [14]. 

 
 

4. Simulation Results 
 
In order to validate the proposed DP control system, we carry 

out computer simulations using the nonlinear model of a off-
shore supply ship Northern Clipper which was presented in [4]. 
The length of Northern Clipper is L = 72.6 (m) and the mass is m 
= 4.591⋅106 (kg). The coordinate system is located in the center 
of gravity. The bias time constants were chosen as 

}1000,1000,1000{diagT = . The wave model parameters were 
also chosen as in [4] with ζi = 0.1 and ωoi = 0.8976 (rad/s) 
corresponding to a wave period of 7.0 (s) in surge, sway and yaw. 

 
The ANNAI controllers are feedforward neural networks with 

four input neurons, six hidden neurons and one output neuron. 
The input vector of each neural network consists of Xi and their 
three delayed signals. Number of training iterations in one 
control cycle of each neural network is fixed at 50. The other 
parameters are 

 
]25.0,175.0,125.0[],,[ 321 =ρρρ           (31) 

]2.0,025.0,1[],,[ 321 =λλλ                (32) 
]2.0,02.0,5.1[],,[ 321 =κκκ               (33) 

]5.0,5.0,3.0[],,[ 321 =γγγ                (34) 
 
The gains of PD-controller are chosen as: 
 

 }3200,350,350{ eeediagK p =            (35) 

}340,310,310{ eeediagKd =             (36) 
 
 

4.1 Station-keeping Simulation 
 
In this simulation, the center of gravity is stationed at the point 

(0,0). Initial ship heading is 900, after 300s the heading is 
changed to 1600 and after 1700s it is changed to 1350 (Figure 3). 

 
The simulation result has shown the ability of the DP system 

in station-keeping. The ship was stably kept at desired position 
and direction was correctly changed under the effect of external 
disturbances represented by bias term. 
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Figure 3. xy plot (top); measured (dotted), filtered position 
and heading; and control forces and moment. 

 
 

4.2 Low-speed Maneuvering Simulations 
 
In these simulations we select a desired track connecting four 

marked points (0,0), (100,-100), (200,0), (100,100), (0,0). In all 
simulations the ship positions are plotted every 60 seconds, off-
track distance, filtered position in x, y and ship heading, control 
forces and moment are shown. In low-speed maneuvering 
following marked points, we use distance from R to current 
marked point Zep as in [14] to modify equation (30) as follow: 
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where 

]15,2.0,2.0,95.0[],,,[ 4321 =χχχχ .        (38) 
 
Equation (37) can reduce ship speed exponentially while 

approaching the marked point to prevent position overshoot. By 
selecting values of xΔ , yΔ  to determine position of H, we can 
make a specific point of ship follow the desired track. The 
following three cases are simulated: 

 
Case 1: The point H is located at the center of gravity of the 

ship and follows the desired track while ship heading on each 
segment is set to 00, 3150, 2250, 1350. In this case, position of H 
in vessel-fixed reference coordinate is chosen as: 0=Δx , 

0=Δy . The initial position and heading of ship is (0,0) and 00. 
The simulation result is shown in Figure 4. 
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Figure 4. Ship track (top); off-track distance, position and 

heading; and control forces and moment (case 1). 

In this simulation, the center of gravity of the ship moved 
along the desired track with small off-track distance and heading 
is kept at desired value. At each marked point, ship heading was 
changed to new desired value before the ship continued to move 
along new segment. This action is resulted in by the effect of 

new item ψχ Δ− 4e  in equation (30). 
 
Case 2: The point H is located on the bow of the ship and 

follows the desired track while ship heading on each segment is 
set to 00, 900, 1800, 2700. In this case, position of H in vessel-
fixed reference coordinate is chosen as: 2/Lx =Δ , 0=Δy . 
The initial position and heading of ship is (-L/2,0) and 00. The 
plot of the ship positions is shown in Figure 5. 
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Figure 5. Plot of the ship track in case 2. 
 
 
Case 3: Similar to the Case 2 but the ship heading on each 

segment is set to 3150, 450, 1350, 2250. The plot of the ship 
positions is shown in Figure 6. 
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Figure 6. Plot of the ship track in case 3. 

 
 
In the simulations of cases 2 and 3, ship’s bow followed the 

desired track, and the desired heading was maintained. At each 
marked point, the ship’s bow was stationed at the point so that 
ship heading changed to new value before moving along new 
segment. Clearly, this action is also resulted in by the effect of 

new item ψχ Δ− 4e  in equation (30). 
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5. Conclusion 
 
This paper presents a new hybrid neural adaptive DP system 

for ship using ANNAI controllers and conventional PD-
controller. Principally, the difference between the proposed DP 
system in this study with that of other studies is that the ANNAI 
controller is introduced to adaptively compensate for unknown 
bias term representing slowly-varying environmental 
disturbances and minimize positioning and tracking error. 
Employing the advantages of the ANNAI controller, the DP 
system can also cope with unmodeled nonlinear dynamics of 
ships. 

 
Additionally, a method of moving the reference point is 

modified and applied to low-speed maneuvering shows the 
effectiveness of stabilizing ship at reference point while 
maintaining the desired heading. This ability is useful for 
specialized tracking functions for supply ships, cable and pipe 
laying ships. 

 
Finally, to validate the proposed DP system, computer 

simulations have been carried out and shown the feasibility of 
the DP system in position-keeping as well as various 
maneuvering situations. Next studies will consider the actuator 
allocation and saturation, extreme environmental situations. 
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