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Abstract 
 
This article propose a new idea of developing a hybrid scheme to achieve faster INS alignment with higher accuracy 

using a novel procedure to estimate the initial attitude angles that combines a Kalman filter and Adaptive Neuro-
Fuzzy Inference System architecture. A tactical grade inertial measurement unit was applied to verify the 
performance of proposed scheme in this study. The preliminary results indicated the outstanding improvements in 
both time consumption for fine alignment process and accuracy of estimated attitude angles, especially in heading 
angles. In general, the improvement in terms of time consumption and the accuracy of estimated attitude estimated 
accuracy reached 80% and 70% respectively during alignment process after compensating the attitude angles 
estimated by an extended Kalman filter with 15 states using proposed approach. It is worth mentioned that the 
proposed approach can be implemented in general real time navigation applications.     
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1. Introduction 
 
In order to provide navigation solutions (i.e., position, 

velocity, and attitude) using the specific forces and angular rate 
provided by an IMU, an INS mechanization which consists of 
the orientation of the IMU with respect to the navigation frame is 
needed. The relationship between navigation frame and body 
frame is described using the transformation matrix n

bR . 
However, the transformation matrix needs to be updated 
continuously since it works on a moving platform. The accuracy 
of those navigation parameters depends on the initial value of the 
transformation matrix n

bR . The process of computing the initial 

value of n
bR is known as the alignment of an IMU [El-Sheimy 

et al., 2004]. Alignment is accomplished with coarse alignment 
(CA), and fine alignment (FA). The CA process provide a quick 
orientation of the platform with respect to the navigation frame 
using the accelerations and angular rates obtained directly from 
the sensors without consideration of their errors [Jekeli, 2001]. 
For the strapdown system, a course alignment can be done in a 
similar way, though strictly in analytical and numerical way. On 
the other hand, FA provides optimal estimate algorithm to 
estimate the error of inertial systems. 

The purpose of the CA is the determination of approximate 
values of the attitude angles (roll, pitch, and heading) between 
the body frame and navigation frame. The FA, then, refines the 
CA estimated attitudes using an iterative optimal estimation 
technique [Savage, 2000]. However, the obtained accuracy from 
alignment process depends mainly on the performance of the 
inertial sensors, i.e., sensor biases and output noise [Salychev, 
1998]. Due to the relatively large measurement noise of the 
inertial sensors, especially for gyroscopes, usually need more 
time for the KF to converge [El-Sheimy et al., 2004]. 
Measurement errors, especially gyro bias, would extend the time 
needed to perform an accurate alignment. Since a key benchmark 
figure for many INS based navigation systems is the amount of 
time the INS needs to achieve readiness for navigation, 
considerable effort goes into devising fast, but accurate 
alignment and initialization procedure [Jekeli, 2001]. Recently, 

some of the alternative techniques have been developed to 
improve the accuracy of estimated by the Kalman filter; for 
example, El-Sheimy et al., [2004] incorporated wavelet 
denoising technique with Kalman filter to accelerate the 
alignment process with improved accuracy.  

On the other hand, Artificial Intelligence (AI) techniques have 
been applied to develop alternative INS/GPS integration schemes 
to overcome the limitations of Kalman filter and improve the 
positional accuracy of a vehicular navigation system during GPS 
signal blockages successfully [Chiang, 2004]. However, utilizing 
AI techniques to improve the accuracy of the alignment are still 
not active research works in authority aspects. Therefore, this 
article will focus on two objectives: (1) construct a hybrid 
alignment scheme using a Kalman filter and Adaptive Neuro-
Fuzzy Inference System (ANFIS) to achieve faster alignment 
with higher accuracy in comparison with a conventional scheme 
that uses a Kalman filter and (2) verify the performance of 
proposed scheme using several field test data that were collected 
independently. 

 
 

2. Mechanization and Optimal Estimation of INS 
 

The convergence time and accuracy of the conventional 
alignment algorithm, i.e. CA + FA, are mainly depending on the 
fine alignment. Since the only signals during stationary 
alignment process that can affect the inertial sensors are the 
Earth’s gravity and the Earth’s rotation rate, the autonomous 
alignment method can be done only when the gyro bias is 
smaller than the value of the Earth’s rotation rate [El-Sheimy et 
al., 2004]. Fine alignment use the INS mechanization and the 
navigation KF (with some simplification sometimes) but only 
applying the measurement updates of zero velocity and the Earth 
rate, which are available in the static mode. So the key parts of 
the fine alignment are actually the navigation algorithm.  
 
2.1. INS Mechanization Equations 
 
  The essential process implemented in any inertial navigation 
algorithm is the INS mechanization process. The INS 
mechanization equations integrate the accelerations and angular 



rates provided by the inertial sensors (accelerometers and 
gyroscopes) to compute the position, velocity, and attitude (PVA) 
of the vehicle [Wong, 1988]. The algorithm takes into account 
the earth rotation rate and gravity. These mechanization 
equations can be simply presented as follows: 
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where is the position vector, is the velocity vector, 
lr lv l
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is the transformation matrix from the IMU body to local level 

frame as a function of attitude components,  is the gravity 
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respectively, and is a 3x3 matrix whose non zero elements 
are functions of the user’s latitude and ellipsoidal height. 
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For further details of solution and numerical implementation 
of the above differential equation, see El-Sheimy [2002]. An INS 
mechanization algorithm by itself is seldom in good performance 
due to the inertial sensor biases and the fixed-step integration 
errors, and these errors will cause the PVA solution to diverge 
quickly. The navigation software must have some approach to 
account for these error sources to correct the estimated PVA [El-
Sheimy et al., 2004]. 
 
2.2 Kalman Filtering 
 

The dynamic error model used in a KF for the navigation 
parameters (position, velocity and attitude) can be determined 
through the linearization of the INS mechanization equations and 
by neglecting insignificant terms in the resultant linear model. In 
addition to the nine navigation elements in (equation 2), states of 
the dynamic model include the sensor errors (three accelerometer 
biases and three gyro drifts). It is a common tend to model the 
stochastic part of these sensor errors as first order Gauss Markov 
process. The state space representation of dynamic error model is 
of the form: 
 

x Fx Gw= +                (2) 
 
where x is the error state vector of inertial navigation containing 
the following 15 states, is the dynamic matrix, a detail 
element expression of the matrix is proven in [Mohinder and 
Angus, 2001], and in equation (2) is a zero-mean Gaussian 
white noise vector. 
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Kalman filtering can be used to optimally estimate these 
elements using a form of feedback control at the current epoch. 
For this purpose, the statistical properties of the system should be 
well defined. In a Kalman filter, the final state estimates are 
based on a combination of predicted states and the actual 
measurements. Basically, the equations of KF are divided into 
two groups [El-Sheimy, 2002]; prediction and update. The time 
prediction equations are responsible for the forward time 
transition of the current epoch (k-1) states to the next epoch (k) 
states. The time prediction equations are [Gelb, 1974]:  
 

ˆ ( )kx − 1ˆ ( )k kx −= Φ +              (3) 

1( ) ( ) T
k k k kP P −− = Φ + Φ + 1Q −         (4) 

 
where x̂  and  are the optimally estimated state vector and 
its variance-covariance matrix of inertia states, Q  is the 

system noise covariance matrix,  denotes the estimated  

value after prediction, and 

P

( )−
( )+  denotes the estimated value 

after updating. The measurement update equations utilize new 
measurements into the a priori state estimate to obtain an 
optimized a posteriori state estimate. 
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The measurement update equations are given from equation (5) 

to (7) where the Kalman gain matrix is , is the vector of 
updating measurements of position and velocity, and is the 
measurements variance-covariance matrix. 
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R

For the case of fine alignment, the measurement vector (i.e. z) 
is normally consists of only the velocity (which is zero for 
stationary alignment). Sometimes the earth rate is also included 
as an additional update. 
 
 
3. Concepts of Fuzzy Logic and ANFIS 
 

Fuzzy logic systems have been considered as an alternative 
approach which is able to cope with uncertain information and to 
provide a framework for handling uncertainty and imprecision in 
real-world application. It is able to simultaneously handle 
numerical data and linguistic knowledge. It is also a nonlinear 
mapping of an input data (feature) vector into scalar output, in 
other words, it maps numbers into numbers [Mendel, 1995]. 
Fuzzy logic algorithms accomplish this by allowing computers to 
simulate human reasoning with less bias, but, in the process, to 
behave with less analytical precision and logic than traditional 
computing methods [Turban and Aronson, 2000].  
  Unlike the traditional hard computing, soft computing strives 
to model the pervasive imprecision of the real world. Solutions 
derived from soft computing are generally more robust, flexible, 
and economical than those provided by hard computing 
[Malhotra and Malhotra, 1999]. Moreover, fuzzy logic with 
neural networks and probabilistic reasoning constitute the three 
cornerstones of soft computing, a trend that is growing in 
visibility [Zadeh, 1994]. 

 
 
3.1 Fuzzy Inference Systems 
 

Fuzzy inference systems (FIS) have recently gained reputation 
as well established means of utilizing human intelligence 
machines. There are three types of fuzzy inference systems, 
which are used in several aspects of engineering applications: the 
Tagaki-Sugeno-Kang (also known as Sugeno), the Mamdani FIS 
or the TSK-FIS and the Tsukamoto fuzzy inference systems (TS-
FIS) [Sugeno 1985, Jang et al. 1997 and Cordόn et al. 2001]. 
They are different in their methods of fuzzification of the input 
space, defuzzification to the output space and aggregation [Reda 
Taha et al., 2003], while all FIS use similar logic. In this article, 
TSK-FIS shall be used for modeling unknown process.  



A fuzzy inference system is composed of five components, as 
shown in the Figure (1). A rule base containing a number of 
fuzzy if-then rules which are capable of describing the desire 
system behaviors, and a database defines the membership 
functions of the fuzzy sets used in the fuzzy rules. Usually, the 
rule base and the database are jointly referred to as the 
knowledge base [Jang, 1993]. Decision-making unit performs the 
inference operations on the rules. Fuzzification is defined as the 
process of mapping numerical inputs to the fuzzy domain of the 
model which ranges between zero and one using membership 
functions. These membership functions define how much each 
data point belongs to each data set or cluster in the input space. 
On the other hand, defuzzification is regard as the process of 
transferring the aggregated fuzzy sets at the output space to a 
single value that represents the membership of the output 
parameter to the aggregated fuzzy set [Reda Taha,. et al., 2003]. 
The defuzzification process is usually done using the centroid 
function in Mamdani systems [Mamdani and Assilian, 1975] and 
the weighted average in Tagaki-Sugeno-Kang (TSK) systems 
[Sugeno, 1985]. 
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Figure 1. Fuzzy inference system 

 
3.2 ANFIS Architecture 
 

Normally, an approximate fuzzy model is first initiated by the 
system, and then improved through an iterative adaptive learning 
process. The training algorithm was developed by Jang [1993] 
and is referred to as the ANFIS or Adaptive Neuro-Fuzzy 
Inference System. ANFIS was proposed in order to combine the 
advantages of both neural networks and fuzzy inference systems 
[Jang et al. 1997].  

Figure (2) illustrates a possible architecture of ANFIS for two-
input one-output system. Input X is assumed to have three 
membership functions and two membership functions for input 
Y. Fuzzification process is done at layer 1. The fuzzified inputs 
which mean weights are normalized using a T-norm operator at 
layer 2. At layer 3, the ratio of every rule’s firing strength of the 
sum of all rules’ firing strength is calculated, and the fuzzy rules 
are applied at layer 4. Finally, the output Z in layer 5 is gained by 
the sum of the weighted outputs of all fuzzy rules.  
 

 
Figure 2. A general ANFIS architecture 

 

ANFIS algorithm is basically a technique which provides a 
method for fuzzy modeling procedure to learn information about 
a given data set to compute the membership function parameters 
that best allow the associated fuzzy inference system to track the 
input/output data. This learning method is quite similar to the 
training of neural networks and combines back-propagation and 
least mean square optimization algorithm. In addition, the 
membership functions are tuned with gradient decent method to 
determine the premise parameters. Training won’t stop until the 
preset epoch number or error rate is obtained. Neuro-fuzzy 
systems have been proven as efficient modeling techniques for 
mapping non-linear systems. 
 
 
4. Proposed Hybrid Scheme 
 

The Kalman filter (KF) is utilized to optimally estimate the 
initial attitude errors as well as the sensor biases and compensate 
for their effect. This process usually requires about 10 to 15 
minutes of static data for tactical-grade IMUs. The observations 
(updates) for .the KF, in this case, are Zero Velocity Updates 
(ZUPTs).  
 
4.1 Training of the ANFIS-KF Intelligent Scheme 
 

In order to accelerate the INS alignment process and obtain 
those initial attitude angels with higher accuracy, an intelligent 
compensation method can be implemented to predict the error in 
fine alignment procedure. During the alignment process, the 
outputs of Kalman filter might contain the errors that can not be 
estimated well due to the limitations mentioned in Chiang [2004]. 
Consequently, the overall accuracy of estimated attitude angles 
can be deteriorated. In addition, Kalman filter requires more time 
to converge. Therefore, an algorithm that can predetermine the 
error behavior of Kalman filter is needed. Hence, an ANFIS-KF 
integrated algorithm is delivered to do so. Once it has been 
trained well, The ANFIS is expected to work efficiently to 
compensate the errors of predicted by the KF used. 

As indicated in Figure (3), the errors of roll, pitch, and heading 
estimated by Kalman filter are used as the desired output or 
target values during the learning process of three different 
ANFIS architectures, respectively. It is decided to use three 
separated architectures instead of one because the error behaviors 
of roll, pitch, and heading vary. In addition, the roll, pitch and 
heading angles along with the time information in each scenario 
are used as the inputs for those architectures, respectively.   
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Figure 3. An ANFIS training architecture 

 
In this article, the target values, the initial attitudes errors of 

the Kalman filter, were obtained with respect to reference 
solution which is generate by the post mission process (e.g. 
smoothing algorithm) using a high-accuracy navigation grade 
IMU. The parameters of membership functions of the ANFIS are 
then tuned epoch-by-epoch according to the training error. The 
training process terminates after the training errors reach the 



error threshold. This process can be regarded as the training 
mode of the proposed hybrid scheme.   
 
4.2 Predicting Errors Using ANFIS-KF Architecture 
 

After being well trained, the proposed ANFIS architectures 
can then be utilized in compensation or prediction mode when 
the new measurements provided by an IMU in alignment mode 
are applied. Similar to the training mode, the hybrid architecture 
first receives raw data from an IMU then uses a 15 states Kalman 
filter in ZUTPs mode to estimate initial attitude angles, 
meanwhile, the estimated attitude angles are sent to proposed 
ANFIS architectures along with time information in each 
scenario to generate predicted errors for compensating the 
estimated angels provided by the Kalman filter simultaneously. 
Errors of three attitude angles are predicted with three different 
ANFIS architectures, and the correction would be completed 
after the predicted errors have been removed from the outputs of 
KF. A prediction process is illustrated in the Figure (4). It is 
worth mentioning that the proposed architectures can be operated 
in real time for compensating those initial attitude errors. 
 

 

-
+

Σ Corrected
Attitudes

Predicted
Attitude Errors

Attitudes

Prediction
Inputs

Raw
data

IMU
Kalman
Filter

ANFIS
 

Figure 4. ANFIS prediction architecture 
 
 
5. Experimental Result of Proposed Scheme 
 
5.1 The Platform 
 

In order to evaluate the effectiveness of the proposed ANFIS-
KF model, three field test data (provided by the MMSS group at 
the Department of Geomatics Engineering, the University of 
Calgary) incorporating a tactical-grade IMU, LN200 (Litton) and 
navigation-grade IMU, CIMU (Honeywell).   
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Figure 5. Setting of LN200 and CIMU 

 
Three field data were collected under different environment 

and time. Therefore, these filed data can be considered 
independent from each other. The setting of LN200 and CIMU is 
shown in Figure (5). The axes of LN200 are basically aligned 
together with the axes CIMU of in order to provide reference 
solutions. The reference solutions were generated in post-mission 
mode using a navigation grade IMU, CIMU. 

 

5.2 Training Result 
 

The first test data was utilized as the training data. The length 
of this data set is 300 seconds. Since the ANFIS was trained by 
1st test data, it learnt the estimated error behaviors of the attitude 
angles provided by the Kalman filter using the same data set very 
well. As indicated in the Figure (6), the estimated attitude errors 
were almost removed through compensation process using the 
proposed scheme. In addition the Root Mean Square (RMS) 
errors of proposed scheme and Kalman filter are listed in Table 1. 
As stated previously, since the training data set was utilized as 
test data set in this scenario, the attitude errors estimated by 
Kalman filter were compensated well.  
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Figure 6. Compensated attitude errors (1st data set) 

 
5.2 Testing Result 
 

To examine the performance of proposed scheme in 
prediction mode, two field test data sets that were collected 
independently from the training data set were applied as the test 
data sets. The time spans of those data sets are 300 seconds and 
70 seconds, respectively. Figures (7) and (8) demonstrate the 
enhancement after applying compensation scheme. As indicated 
in both figures, there are no significant improvements after 
applying proposed scheme for compensating roll and pitch errors 
as those errors are well estimated using Kalman filter. However, 
the heading errors in both scenarios are well compensated in 
term of the magnitude of the heading error as well as the time 
span for convergence. The significant improvement in heading 
errors in accuracy and time after applying compensation scheme 
are listed in Tables 1 and 2.     

  
Table.1:  RMS value enhancement after compensation 

RMS value (degree) Field
test

Attitude
Angle original compensated 

Improvement
(%) 

roll 0.0068 0.0030 56% 
pitch 0.0039 0.0037 5% 1st

heading 1.2532 0.0149 98.8% 
roll 0.0094 0.0080 14.9% 

pitch 0.0022 0.0023 -4.5% 2nd

heading 0.7923 0.0448 94.4% 
roll 0.0117 0.0088 24% 

pitch 0.0039 0.0042 -7.7% 3rd

heading 0.2964 0.0913 69.2% 
 
 
 



Table.2. Alignment time enhancement after correction  
Alignment time of heading(sec) Field 

test original compensated 
Improvement 

(%) 

2nd 185 20 89.1% 

3rd 253 27 89.3% 
 
As indicated, the time epochs for convergence in heading 

errors are indicated by arrows in the Figures (7) and (8). The 
significant improvement in heading errors in accuracy and time 
after applying compensation scheme are listed in Tables 1 and 2. 
As presented in Table 1, the improvements in heading errors 
after applying compensation scheme reach 94.7% and 69.2%, 
respectively. In addition, Table 2 verifies the improvement in 
convergent time to be 89.1% and 89.3%, respectively. In other 
words, based on the field test data sets applied in this article, the 
proposed scheme is able to provide a faster alignment procedure 
with superior accuracy in compensating heading error, which is 
the most difficult element to estimate during normal alignment 
process. 
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Figure 7. Compensated attitude errors (2nd data set) 
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Figure 8. Compensated attitude errors (3rd data set) 

 
This is the template to produce the proceedings for 

IAIN/GNSS 2006. The paper should be submitted surely after 
author’s confirmation if there is no error because it will be 
published as it is. 

 
 

6. Conclusion 
 

The idea of developing a hybrid scheme to reach faster IMU 
alignment with higher accuracy using a novel procedure that 
combines an ANFIS architecture and Kalman filter is presented 

in this article. The ANFIS architectures were first trained to learn 
the residual error of Kalman filter using the field data set 
gathered with a tactical grade IMU (LN200). Then the proposed 
architectures were evaluated in terms of the accuracy and time 
using two field test data sets that were collected independently 
from the training data set using the same system. 

The preliminarily results presented in this article indicate the 
improvement of saving the time consumption of alignment 
process by 89.1% and 89.3%, respectively. In addition, the 
compensation schemes were able to improve in heading errors 
after applying compensation scheme reached 94.4% and 69.2%, 
respectively. In other words, based on the field test data sets 
applied, the proposed scheme in this article has a better 
performance that accelerate alignment procedure with superior 
accuracy in compensating heading error, which is much difficult 
to estimate than the other two attitude angles during normal 
alignment process.  
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