Critical Currents at the Grain Boundary of (Sm_{0.8}Dy_{0.2}) Ba₂Cu₃O₇ Film under Oblique Magnetic Fields

Sunme Lim, Yonghwan Jung, Sangmoo Lee, Yehyun Jung, and Dojun Youm

*Physics Department, KAIST, 305-701 Daejon, Korea

We measured critical current densities (J_{cb}) at the 30° grain boundary of a bicrystalline $(Sm_{0.8}Dy_{0.2})$ Ba $_2$ Cu $_3$ O $_7$ film under various magnetic fields (H_a) , which were applied obliquely. We varied the field from -0.7KOe to +0.7KOe while the angles (\Box) of the fields were 2°, 22.5°, 45°, 67.5° and 90° with respect to the film surface. The curves of J_{cb} vs H_{σ} showed the well-known butterfly-like hysteretic curves. We separated the two components of field, H_{\perp} and H_F , which are normal and parallel to the film surface, respectively. Our data indicate that the roles of these two components for the field dependence of J_{cb} are different. We combined the effect of H_{\perp} deduced from the data for the normal field (\Box =90) and the effect of H_F deduced from the data for the almost parallel field (\Box =2°). Multiplying the independent reduction factors deduced from these two cases, we found a new formula, which expresses J_{cb} vs H_{σ} for general \Box s. All the experimental data for various \Box s fit well to this new formula.