Evolution of Two-gap Superconductivity for $Mg(B_{1-x}C_x)_2$ Single Crystals

Min-Seok Park^{*, a}, Heon-Jung Kim ^a, Hyun-Sook Lee ^a, Myung-Hwa Jung ^b, Younghun Jo ^b, Sung-Ik Lee ^a

^a National Creative Research Initiative Center for Superconductivity and Department of Physics,
Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
^b Quantum material laboratory, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea

The temperature and the angle dependence of the upper critical fields $[H_{c2}(T,\theta)]$ of the two-gap superconductor $Mg(B_{1-x}C_x)_2$ single crystals (x=0.06 and 0.1) were obtained by resistivity measurements. These experimental results of $H_{c2}(T,\theta)$ were explained by the dirty-limit two-gap model. The obtained fitting parameters indicate that the impurity scattering in the π -band systematically increased. The upward curvature near T_c in the $H_{c2}(T)$ curve indicates that it is in the dirty σ regime. The upper critical field $[H_{c2}^{\ ab}(0)]$ is enhanced but the anisotropy ratio $[\gamma_H(T)=H_{c2}^{\ ab}(T)/H_{c2}^{\ c}(T)]$ decreases by C substitution. Interestingly, C doped MgB_2 shows a pronounced peak effect.

Keywords: upper critical field, anisotropy, diffusivity, C doping