Hall Conductivity and Vortex Phase in MgB₂ Thin Film

Soon-Gil Jung^a, W. K. Seong^a, W. N. Kang^{*, a}, Eun-Mi Choi^b, Heon-Jung Kim^b, Sung-Ik Lee^b, Hyeong-Jin Kim^c

^a Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

^b National Creative Research Initiative Center for Superconductivity, Department of Physics,
Pohang University of Science and Technology, Pohang 790-784, Korea

^c National Creative Research Initiative Center for Semiconductor Nanorods, Department of Materials Science and
Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea

In MgB₂ thin film superconductor, we have found that Hall conductivity (σ_{xy}) is described by the sum of two terms, $\sigma_{xy}=C_1/H+C_3H$, where C_1 and C_3 are independent on the magnetic fields and have the positive values. The C_1 is observed to be proportional to $(1-t)^n$ with $n=3.3\pm0.1$ and t being the reduced temperature (T/T_c) , and C_3 is weakly dependent on the temperature. These results are well consistent with those of the overdoped $La_{2-x}Sr_xCuO_4$ superconductors. Based on the Hall angle data, we obtained vortex phase diagram with three regions, vortex-solid, critical, and vortex-liquid regions.

Keywords: MgB2 thin film, Hall conductivity, Hall angle, vortex phase diagram