Electronic Structure of Electron-doped Sm_{1.85}Ce_{0.15}CuO₄: Strong 'Pseudo-Gap' Effects, Nodeless Gap and Signatures of Short Range Order S. R. Park^a, Y. S. Roh^a, Y. K. Yoon^a, C. S. Leem^a, J. H. Kim^a, B. J. Kim^b, H. Koh^c, H. Eisaki^d, N. P. Armitage^{e,f}, C. Kim^a ^a Institute of Physics and Applied Physics, Yonsei University, Seoul, Korea Angle resolved photoemission (ARPES) data from the electron doped cuprate superconductor Sm_{1.85}Ce_{0.15}CuO₄ shows a much stronger pseudo-gap or "hot-spot" effect than that observed in other optimally doped n-type cuprates. Importantly, these effects are strong enough to drive the zone-diagonal states below the chemical potential, implying that d-wave superconductivity in this compound would be of a novel ``nodeless" gap variety. The gross features of the Fermi surface topology and low energy electronic structure are found to be well described by a simple spin density wave model. Comparison of the ARPES and optical data from the same sample shows that the pseudo-gap energy observed in optical data is consistent with the inter-band transition energy of the model. However, the high energy electronic structure is found to be inconsistent with such a scenario. We show that a number of these model inconsistencies can be resolved by considering a short range ordering or inhomogeneous state. Keywords: ARPES, electron-doped, Pseudo-gap ^b School of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul, Korea ^c Advanced Light Source, Lawrence Berkeley NationalLaboratory, Berkeley, California 94720, USA ^d Advanced Industrial Science and Technology, Tsukuba, Japan ^e Departement de Physique de la Matiere Condensee, Universite de Geneve, quai Ernest-Ansermet 24, CH1211 Gen\`{e}ve 4, Switzerland f Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218