NMR Measurements of Vortex Dynamics in Novel Superconductors Moohee Lee*, a, K. H. Leeb, K. H. Kang a, B. J. Mean, and B. K. Cho^c a Konkuk University, Seoul 143-701, Korea b Korean Basic Research Institute, Daejeon 305-333, Korea c Gwangjoo Institute of Science and Technology, Gwangjoo 500-712, Korea Pulsed nuclear magnetic resonance (NMR) measurements have been performed on RNi₂B₂C (R=Y, Lu) and MgB₂ samples to investigate vortex structure and dynamical behavior. Spectrum, linewidth and transverse relaxation rate 1/T₂ of ¹¹B and ¹³C NMR are measured and compared down to 3.8 K in a field range of 1 – 8 T. With lowering temperature below T_c, ¹¹B NMR spectrum, linewidth, and 1/T₂ exhibit distinct features depending on vortex phases. Also, motional narrowing of linewidth and double-peak structure of 1/T₂ supports significant thermal motion of vortices in RNi₂B₂C superconductors. On the other hand, the same measurements for MgB₂ show less pronounced changes in NMR data relevant to vortex dynamics; 1/T₂(T) shows a single peak and the relaxation profile changes from Lorentzian decay to Gaussian decay at lower temperature. This strongly suggests that thermal fluctuation of vortices is reduced at low temperature. These results will be compared with NMR data of vortex dynamics for cuprate superconductors. Keywords: Vortex dynamics, NMR measurements, RNi₂B₂C, MgB₂, YBCO superconductor