Generalized Complex Hadamard Codes

Xueqin Jiang TaeChol Shin MoonHo Lee Gi Yean Hwang Chonbuk National University

Jiangxueqin@hotmail.com tcshin@naver.com Moonho@chonbuk.ac.kr Informan@chonbuk.ac.kr

Abstract

In this paper we consider a family $\left\{H_{m}\right\}, m=1,2, \ldots$, of generalized Hadamard matrices of order p^{m}, where p is a prime number, and construct the corresponding family $\left\{C_{m}^{*}\right\}$ of generalize p-ary Hadarmard codes which meet the Plotkin bound. Index terms: Cyclotomic fields, cocyclic matrices, ButsonHadamard matrices, generalized Hadamard codes, decoding.

I. Introduction

In this paper we construct two families $\left\{C_{m}^{*}\right\}$ and $\left\{\tilde{C}_{m}^{*}\right\}$ of nonlinear p-ary codes derived from Kronecker powers $H_{m}=H^{\otimes m}$ of the generalized Butson Hadamard matrix [1] $H=\left(\omega^{(i-1)(j-1)}\right)_{(1<i, j \leq p)}$.

In [2], [3] and [4], the authors introduced a very general construction of cocyclic Hadamard codes derived from Hadamard matrices with entries from a finite abelian group G. this construction requires multiplication of matrices, so we have to work in the group ring RG , where R is a unitary commutative ring.
These codes have nice parameters and very easy encoding and decoding procedures. The main result of the paper is formulated as follows.

Theorem 1. The codes C_{m}^{*} and \widetilde{C}_{m}^{*} are nonlinear p-ary codes with parameters $\left(p^{m}, p^{m},(p-1) p^{m-1}\right)$ and $\left(p^{m}, p^{m+1},(p-1) p^{m-1}\right)$, respectively, which meet the Plotkin bound and correct any $t \leq\left[\frac{(p-1) p^{m-1}-1}{2}\right]$ errors.

II. Generalized Hadamard Matrices

In this paper we work in the ring $Z[\omega]$ of algebraic integers of $Q(\omega)$. The elements of $Z[\omega]$ are algebraic integers of the form $\alpha=a_{0}+a_{1} \omega+\cdots+a_{p-2} \omega^{p-2}$ Where $a_{0}, a_{1}, \cdots, a_{p-2} \in Z$. The ring $Z[\omega]$ contains the multiplicative cyclic group $C=\left\{1, \omega, \omega^{2}, \cdots, \omega^{p-1}\right\}$ of order p with the property that $1+\omega+\omega^{2}+\cdots+\omega^{p-1}=0$
If $\quad H=\left(\omega^{(i-1)(j-1)}\right)_{1 \leq i, j \leq p}$
is a generalized Butson-
Hadamard matrix, we set

$$
r_{i-1, j-1} \equiv(i-1)(j-1)(\bmod p)
$$

$0 \leq r_{i-1, j-1} \leq p-1$
And write H in the form $\quad H=\left(\alpha_{i j}\right)_{1<i, j \leq p}$
Where $\alpha_{i, j}=\omega^{r_{i-1, j-1}}$ are elements of the group C, Now we define H^{*} as the Hermitian transpose of H , or the transpose of $\bar{H}=\left(\bar{a}_{i j}\right)$, where $\bar{\alpha}_{i j}$ is the complex conjugate of $\alpha_{i j}$. We observe that $\bar{\alpha}_{i j}=\bar{\omega}^{r_{i-1, j-1}}=\omega^{-r_{i-1, j-1}}=\omega^{p-r_{i-1, j-1}}$, so $\bar{\alpha}_{i j}$ again is an element of C. It is clear, that H and H^{*} are symmetric complex matrices, which implies $H^{*}=\bar{H}$. We observe also, that the core $\left(\bar{\alpha}_{i j}\right)_{2 \leq i, j \leq p}$ of H^{*} is just a permutation of the core $\left(\alpha_{i j}\right)_{2 \leq i, j \leq p}$ of the matrix H. Taking into account (1) we obtain $H \cdot H^{*}=H \cdot \bar{H}=p I$ (2)

Where I is the identity $p \times p$ matrix.
For any integer $m \geq 1$, we define the Kronecker m-th power $H_{m}=H^{\otimes m}$ of the matrix $H=H_{1}$ recursively by the relation $H_{m}=H_{1} \otimes H_{m-1}$, Where
$H_{1} \otimes H_{m-1}=\left(\begin{array}{ccccc}\alpha_{1,1} H_{m-1} & \cdots & \alpha_{1, j} H_{m-1} & \cdots & \alpha_{1, p} H_{m-1} \\ \vdots & & \vdots & & \vdots \\ \alpha_{i, 1} H_{m-1} & & \alpha_{i, j} H_{m-1} & & \alpha_{i, p} H_{m-1} \\ \vdots & & \vdots & & \vdots \\ \alpha_{p, 1} H_{m-1} & \cdots & \alpha_{p, j} H_{m-1} & \cdots & \alpha_{p, p} H_{m-1}\end{array}\right)$
Clearly, H_{m} is a complex symmetric $p^{m} \times p^{m}$ matrix with entries from C. Similarly, if $H_{m}^{*}=H_{1}^{*} \otimes H_{m-1}^{*}$ is the Kronecker m-th power of $H^{*}=H_{1}^{*}$, then H_{m}^{*} again is a symmetric $p^{m} \times p^{m} \quad$ matrix over C , it follows from (2) that $H_{m} \cdot H_{m}^{*}=p^{*} I_{m}$, (3) where I_{m} is the identity $p^{m} \times p^{m}$ matrix.

III. Generalized Hadamard Codes

Let H_{m}^{*} be the Kronecker m -th power of the ButsonHadamard matrix H^{*}. A generalized Hadamard code C_{m}^{*}
is defined as the set of all columns of H_{m}^{*}. Since H_{m}^{*} is a symmetric matrix, the code C_{m}^{*} can be also be defined as the set of rows of the matrix H_{m}^{*}.

Proposition 2. Any two distinct columns of the matrix H_{m}^{*} differ from each other exactly in $(p-1) p^{m-1}$ positions.

Corollary 3. The codes C_{m}^{*}, for $m=1,2, \cdots$, are generalized Hadamard p-ary $\left(p^{m}, p^{m},(p-1) p^{m-1}\right)$ codes which meet the Plotkin bound.

Now we construct a generalized Hadamard code \tilde{C}_{m}^{*} as follows. Consider the matrix $\tilde{H}_{m}=\left(\begin{array}{llll}H_{m} & a H_{m} & \cdots & \omega^{p-1} H_{m}\end{array}\right)^{t}$
And its Hermitian conjugate $\tilde{H}_{m}^{*}=\left(H_{m}^{*}, \bar{\omega} H_{m}^{*} \cdots \bar{\omega}^{p-1} H_{m}^{*}\right)$. An ω iterated Hadamard code \widetilde{C}_{m}^{*} is defined as the set of all columns of the matrix H_{m}^{*}. Using the same arguments as above, we arrive at the following result.

Proposition 4. The codes \widetilde{C}_{m}^{*}, for $m=1,2, \cdots$, are nonlinear p-ary $\left(p^{m}, p^{m+1},(p-1) p^{m-1}\right)$ codes which meet the Plotkin bound.

IV. Decoding Algorithm

The codes C_{m}^{*} and \widetilde{C}_{m}^{*}, introduced above, admit a highly effective decoding procedure, decoding algorithms for C_{m}^{*} and \widetilde{C}_{m}^{*} are very similar and we restrict ourselves by description of a decoding algorithm for the code C_{m}^{*}. Let $H_{m}=\left(\alpha_{i j}\right)_{1 \leq i, j \leq p^{m}}$ be the generalized $p^{m} \times p^{m}$ Hadamard matrix $\quad \bar{\alpha}_{i}^{\tau}=\left(\bar{\alpha}_{i, 1}, \cdots, \bar{\alpha}_{i, p^{m}}\right)^{\tau} \in C_{m}^{*} \quad$ а transmitted code-vector, and $\bar{C}^{\tau}=\left(\overline{\bar{C}}^{\tau}{ }_{i, 1, \cdots,} \overline{\bar{C}}^{\tau}{ }_{i, p^{m}}\right)^{\tau}$ a received vector that differs from $\bar{\alpha}_{i}^{\tau}$ in t positions. We assume that the noisy channel transforms each symbol $\bar{\alpha}$ from the alphabet C to some another symbol \bar{C}^{τ} form C with the same small probability.To restore the transmitted vector $\bar{\alpha}_{i}^{\tau}$ from received vector \bar{c}^{τ} we multiply the matrix H_{m} by \bar{C}^{τ} and then consider the resulting vector $S_{i}^{\tau}=H_{m} \cdot \bar{c}_{i}^{\tau}$. Since the entries of H_{m} and the components of $\bar{\alpha}_{i}^{\tau}$ are elements of the cyclic group $C=\left\{1, \omega, \omega^{2}, \cdots, \omega^{p-1}\right\}$, then resulting vector is a vector of size p^{m} whose components are elements of $Z[\omega]$ which has a unique representation
$s_{i j}=s_{i j}{ }^{(0)}+s_{i j}{ }^{(1)} \omega+s_{i j}{ }^{(2)} \omega^{2}+\cdots, s_{i j}{ }^{(p-1)} \omega^{p-1}$ Which
coefficients $s_{i j} \in Z$. To correct possible errors we examine the components of the syndrome $s_{i}^{\tau}=\left(s_{i, 1}, \cdots, s_{i, p^{m}}^{\tau}\right)$. If the number of distorted symbols in the received vector is $t \leq\left[\frac{d-1}{2}\right]=\left[\frac{(p-1) p^{m-1}-1}{2}\right]$
Then among $s_{i j}, 1 \leq j \leq p^{m}$, we choose a unique component $s_{i, i}$ whose real part $\operatorname{Re}\left(s_{i, i}\right)$ is strictly greater than the real part $\operatorname{Re}\left(s_{i, j}\right)$ of any other component $s_{i j}$. We notice that if there is no error then the number $S_{i, i}$ is real and has the maximal possible value p^{m}. Thus we decode the received vector as the transmitted vector $\bar{\alpha}_{i}^{\tau}=\left(\bar{\alpha}_{i, 1}, \cdots, \bar{\alpha}_{i, p^{m}}\right)^{\tau}$. In other words, the received vector \bar{C}_{i} is decoded as the complex conjugate $\bar{\alpha}_{i}$ of the i-th row of the Hadamard matrix H^{*}. As a result, we see that the code C^{*} corrects any $t \leq\left[\frac{d-1}{2}\right]=\left[\frac{(p-1) p^{m-1}-1}{2}\right]$ errors. Similarly, the ω-iterated Hadamard code \widetilde{C}_{m}^{*} corrects any $t \leq\left[\frac{d-1}{2}\right]=\left[\frac{(p-1) p^{m-1}-1}{2}\right]$ errors.

Reference

[1] A.T. Butson, " Generalized Hadamard matrices", Proc, Amer. Math. Soc., vol. 13, pp. 894-898, 1963.
[2] K. J. Horadam and A. A. I. Perera , " Codes from cocycles", in Proc. AAECC-12, Lecture Notes in Computer Sciences, vol. 1255, pp. 151-163, Springer Verlog, Berlin, 1997.
[3] K. J. Haradam and P. Udaya, "Cocyclic Hadamard codes, IEEE Trans. Inform. Theory, vol. 44, no. 4, pp. 1545-1550.
[4] Wen Ping Ma, Moon Ho Lee, "Complex hadamard codes", IEICE Trans. Fundamentals, vol. E88-A, No. 1, pp. 396-398.

Acknowledgement

This work was partial supported by KOTEF (Ministry of Commerce, Industry and Energy)

