
2006년도 대한전자공학회 하계종합학술대회 제29권 제1호

965

Automatic Generation of Transaction Level Code for Fast SoC Design Space

Exploration

Ganghee Lee, Yongjin Ahn, and Kiyoung Choi

Design Automation Lab., Seoul National Univ. (Email: berean97@poppy.snu.ac.kr)

Abstract

As billion transistors system-on-chip (SoC)

design becomes a reality, the productivity gap

between rapidly increasing design complexity

and designer productivity lagging behind is

becoming a more serious problem to be solved.

To reduce the gap, we present a system that

generates executable transaction level models

automatically. It speed up the SoC design space

exploration process at various abstraction

levels.

1. Introduction

As billion transistors system-on-chip (SoC)

design becomes a reality, the productivity gap

between rapidly increasing design complexity

and designer productivity lagging behind is

becoming a more serious problem to be solved.

To reduce the gap, the focus is being moved

recently toward higher levels of abstraction [1].

So the designer starts with a very abstract

mathematical model such as a process network

or a finite state machine. Then the model is

refined to lower levels of abstraction step by

step before the final implementation is obtained

[2]. Each refinement step typically requires

generating an executable model for simulation to

validate the refined design, which is a

cumbersome and error-prone process if it is

done manually.

In this paper, we present a system that

generates such an executable model

automatically from an intermediate mathematical

model. It generates a SystemC model at the

transaction level, since many efficient

commercial/ non-commercial simulators are

available for this language and level. The

designers can use the proposed system for

evaluating the refined design fast as well as

exploring large design space efficiently.

The system generates transaction level

models at two different levels of abstraction.

One is timed functional model and the other is

bus cycle accurate model. It is integrated into an

MP-SoC design framework that we have

developed.

2. Overview

Figure 1 shows our design flow for SoC design.

It starts with a process network model written in

SystemC. Then it automatically generates a

hierarchical Synchronous Data Flow (SDF)

model which is a combination of SDFs and FSMs.

After that, we statically estimate the

performance using Integer Linear Programming.

The hierarchical SDF model, annotated with the

static estimation results is used for

application-to- architecture mapping. In this

mapping stage, we give proper FIFO buffer size

for communication. For fast system evaluation,

we first generate a Timed Functional SystemC

(TFSC) model. The simulation using this model

is very fast but not accurate enough to evaluate

dynamic behaviors such as bus conflict. After

communication refinement, we generate C code

for each ISS, which will be executed in Bus

Cycle Accurate (BCA) simulation. In this paper,

we focus on TFSC code and BCA C code

generation, which are highlighted in Figure 1.

2006년도 대한전자공학회 하계종합학술대회 제29권 제1호

966

3. Transaction code generation

For TFSC, we generate two kinds of models.

First one is called unscheduled TFSC model.

The unscheduled model has no static schedule

but works with data-driven scheduling

supported by the SystemC kernel. Second one is

called scheduled TFSC model. It contains a

static schedule which is pre-determined in the

mapping stage. The simulation of these two

models can be used for comparing the static

schedule strategy with the data-driven schedule

strategy. Since the SystemC simulation

terminates when it encounters with a deadlock,

our model can also be used for checking

deadlocks due to buffer empty or full. Finally,

these evaluation results are fed-back to the

mapping stage to find a better solution.

Figure 1. Proposed design flow.

The TFSC model is based on a simple model of

point-to-point FIFO connection rather than

actual bus system. In addition, the execution

delay of each process is roughly estimated and

annotated to itself before the simulation run.

Therefore, the simulation is fast but has limited

accuracy.

After refining communication, we generate a

BCA model which is slower but more accurate

than TFSC model. This model can be simulated

with various commercial tools such as MaxSim.

Our BCA model contains C code blocks that are

compiled to be executed on one or more ISSs.

4. Experimental result

We tested the automatic code generation

system with JPEG and H.264 examples. Table 1

shows the result.

Table 1. Generation and simulation runtime

(unit: second)

 JPEG
H.264

(2 frames)

TFSC generation 1 3

TFSC simulation 1 2

BCA (C) generation 1 1

BCA simulation 15 1881

We used a machine with P4 2GHz processor

for the experiment. To measure the runtime, a

simple platform consisting of two ARM9

processors and a shared memory connected

with AHB was used. For BCA simulation, we

used MaxSim, which is currently the fastest

commercial tool for TLM simulation to the best

of our knowledge. In spite of using MaxSim, it

takes 15 and 1881 seconds for each example.

But it’s still tens to hundreds times faster than

RTL simulation. The table shows that automatic

code generation takes only a few seconds.

Replacing the error-prone manual process that

takes hundreds of hours, our automatic code

generation approach is very useful for speeding

up the SoC design space exploration process at

various abstraction levels.

References

[1] K. Keutzer et al. "System-level design:

Orthogonalization of concerns and platform-based

design," In IEEE Transactions on CAD of ICs and
Systems, Dec. 2000

[2] Abdi, S et al. “Automatic communication

refinement for system level design” In Proc of
DAC, 2003

