지형과 기후에 따른 무인기용 가시선 데이타링크 분석

*이현철, 조태균 스마트 무인기 사업단, 한국항공우주연구원 e-mail: hlee@kari.re.kr, maycomes@kari.re.kr

An Analysis of UAV LOS Datalink at Different Geography and Weather

Abstract

In this paper, we analyze the UAV datalink design with calculating link budget of long-distance (200 km) Ku-band LOS wireless link. We calculate C/N of the real system and compare it with the required C/N, using the CCIR reports. In the rainy day of summer on the Korean peninsula, to maintain percent reliability 90% and BER 10^(-5) together, link budget of uplink of the system has a lot of margin at 200 km, link budget of downlink using the block turbo code is enough for distance 200 km.

I. 서론

스마트무인기 기술개발은 지상의 관제사가 조종사 없는 항공기를 제어해야 하므로 무선통신기술이 필요불가결하며 이의 신뢰도가 중요하다. 본 논문에서는 무인기의 고도가 3 km에서 Ku 대역을 이용한 장거리 (200 km) 무선통신 시 무인기의 가시선(line of sight) 통신링크에 대한 분석을 시도한다. 내륙 위와 해변 위통신 시, 그리고 건조한 날과 비가 오는 날 통신 시각각의 손실을 고려하여 반송파 대 잡음비, C/N(carrier to noise ratio)을 계산하는데 통신링크의 required C/N을 구하고 다시 실제 시스템의 calculated C/N을 구하여 그 차이로 통신링크의 설계를 평가한다.

Ⅱ. 무인기 Ku 대역 통신링크의 C/N

2.1 required C/N 계산

무인기용 상향링크는 BPSK/DSSS를 사용하고 하향 링크에는 대역확산방식(spread spectrum) 사용 없이 QPSK를 사용한다. AWGN 환경에서 BPSK와 QPSK의 Bit Error Rate(BER)는 동일하며 상향링크시 BER 10^(-5)을 유지하기 위해 (2,1) 길쌈코드 (convolutional code)를 사용하는 BPSK의 E_b/N_o은 8.0 dB가 필요하고 필요한 C/N의 계산 값[1]은 표 1처럼 5.0 dB가 필요하다. QPSK의 하향링크는 (32,26)x (32,26)x(4,3) 블럭터보코드(r=0.5)를 사용 할 경우 BER 10^(-5)을 유지하기 위해 3.0 dB의 E_b/N_o 값(BPSK 값 사용)이 필요하고 표 1처럼 3.0 dB의 C/N이 필요하다.

표 1. Ku 대역 상향/하향링크의 required C/N

title	unit	uplink	dnlink	
f: freq.	MHz	14750	15250	
d : range	km	50 ~ 200	50 ~ 200	
h: max. height	km	3	3	
R _m : message rate	bit/sec	100000	8000000	
code (conv.) rate	_	0.5	0.5	
R _b : data bit rate	bit/sec	200000	16000000	
B_{if} : IF BW	Hz	400000	16000000	
B _n ∶eq. noise BW	Hz	400000	16000000	
R_b/B_n	dΒ	-3.0	0.0	
E _b /N _o for BPSK	dB	8.0	_	
E _b /N _o for QPSK	dB		3.0	
required C/N@10^(-5)	dΒ	5.0	3.0	

2.2 calculated C/N 계산

2.2.1 잡음전력과 수신전력

$$P_n = kT_nB_n + NF = 10log(k*T_n*B_n) + NF [dB]$$
 (1)

 $P_r = eirp(=G_t+P_t)+G_r-losses-FSL-(path loss)-(rain loss)$ [dB] (2)

2.2.2 자유공간손실

$$FSL = 32.5 + 20 * \log(d) + 20 * \log(f) - G_{p} [dB]$$
 (3)

$$path loss = (Y_o + Y_w)*d [dB]$$
 (4)

2006년도 대한전자공학회 하계종합학술대회 제29권 제1호

Y₀와 Y_w는 감쇄계수로 [2]에 나타나 있는 수식을 사용하여 계산한다. 겨울이면 모든 손실이 여름보다 작아지므로 본 논문에서는 여름의 path loss만 고려한다.

rain loss = rain loss rate * path in rain [dB] (5)

한반도 경우 평균 강수량은 4 mm/h이고 rain loss rate는 0.2 dB/km로 환산하며 최대 6 dB이다.

표 2. Ku 대역 상향/하향링크의 잡음전력

title	unit	uplink	dnlink	
BW with Sp-Sp	Hz	16000000	1	
BW with image	Hz	-	16000000	
k: bolzmann's const.	J/K	1.38e-23		
antenna noise temp.	K	100		
receiver noise temp.	K	290		
T_n : eq. noise temp.	K	390 = 100 + 290		
N_o = kT_n : noise psd	dΒ	-202.7		
NF: noise figure	dB	3.5	2.0	
P _n : noise power	dB	-127.2	-128.7	

2.2.3 calculated C/N

상향링크 C/N은 맑은 여름날 한반도 경우 200 km 에서 33.7 dB(표 3)이나 하향링크는 같은 기후, 지형, 거리에서 18.9 dB(표 4)가 된다.

$$PG = 10log(BW \text{ with } Sp-Sp/R_m)-3 \text{ [dB]}$$
 (6)

calculated
$$C/N(상향) = P_r - P_n + PG [dB]$$
 (7)

calculated
$$C/N($$
하항 $= P_r - P_n [dB]$ (8)

표 3. BER 10^(-5)에서 vehicle(고도 3km, 거리 200 km)의 Ku 대역 상향링크 여유

title	unit	clear day		rainy day	
		inland	coast	inland	coast
G _t : TX gain	dB	42			
P_t : TX pwr	dB	10			
G _r : RX gain	dB	20			
losses	dΒ	12.6			
FSL	dB	157.4			
path loss	dB	5.7	14.6	5.7	14.6
rain loss	dB	0		6	
P_r : RX pwr	dB	-103.6	-112.6	-109.6	-118.54
PG: pro. gain	dB	19.04			
calculated C/N	dB	42.6	33.7	36.6	27.7
margin	dB	27.6	18.7	21.6	12.7

Ⅲ. 결론

percent reliability[3] 90%를 고려하여 required C/N 에 10 dB를 더하면, 상향링크가 한반도 위의 200 km 거리에서 BER 10^(-5)을 유지하기 위해서는 4 mm/h 의 비가 오는 여름날, 해변이나 바다 위에서도 12.7

dB(표 3) 정도의 여유가 있다. 하향링크는 블럭터보코드를 사용하였고 그림 1에 따르면 하향링크가 200 Km 정도에서 BER 10^(-5)을 유지하기 위해서 4 mm/h의비 오는 여름날 한반도에서도 통신가능하다. 겨울에는 path loss가 작아지므로 통신거리가 약간 더 늘어나고지표면에 반사되는 fading 효과를 고려한다면 통신거리는 더 줄어든다.

표 4. BER 10^(-5)에서 vehicle(고도 3km, 거리 200 km)의 Ku 대역 하향링크 여유

title	unit	clear day		rainy day	
		inland	coast	inland	coast
G _t : TX gain	dΒ	20			
P_t : TX pwr	dΒ	14			
G _r : RX gain	dΒ	42			
losses	dΒ	11.9			
FSL	dΒ	157.7			
path loss	dΒ	6.2	16.2	6.2	16.2
rain loss	dB	0		6	
P_r : RX pwr	dB	-99.8	-109.8	-105.8	-115.8
calculated C/N	dΒ	28.9	18.9	22.9	12.9
margin	dB	15.9	5.9	9.9	-0.1

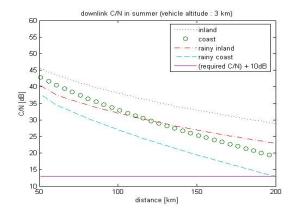


그림 1. 하향링크 C/N

후기

이 논문은 산업자원부 지원으로 수행하는 21세기 프론티어 기술개발사업(스마트무인기기술개발사업)의 일환으로 수행되었습니다.

참고문헌

- [1] D. Roddy, Satellite Communications, New Jersey, Englewood Cliffs, 1989.
- [2] Reports of the CCIR, 1990, 563-4, 1990.
- [3] www.sutron.com, Line of Sight (LOS) Links