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Abstract 

 
In many common control charting situations, the 
statistic to be charted can be viewed as the output of 
a linear filter applied to the sequence of process 
measurement data. In recent work that has 
generalized this concept, the charted statistic is the 
output of a general linear filter in impulse response 
form, and the filter is designed by selecting its 
impulse response coefficients in order to optimize 
its average run length performance. In this work, 
we restrict attention to the class of all second-order 
linear filters applied to the residuals of a time series 
model of the process data. We present an algorithm 
for optimizing the design of the second-order filter 
that is more computationally efficient and robust 
than the algorithm for optimizing the general linear 
filter. We demonstrate that the optimal second-
order filter performs almost as well as the optimal 
general linear filter in many situations. Both 
methods share a number of interesting 
characteristics and are tuned to detect any distinct 
features of the process mean shift, as it manifests 
itself in the residuals. 
 

1.  INTRODUCTION 

 
 Many common control charting methods are 
based on linear filtering in the following sense. The 
statistic to be charted is calculated as the output of a 
linear filter applied to the sequence of process 
observations {xt: t = 1, 2, 3, . . .}. An alarm is 
sounded at observation number t if yt falls outside a 
set of control limits, where {yt: t = 1, 2, 3, . . .} 
denote the sequence of control chart statistics. A 
classic example of this is the exponentially 
weighted moving average (EWMA) control chart of 
Roberts (1959), in which yt is an EWMA of xt. The 
Shewhart individual chart is a trivial case with yt 
equal to xt. When xt is an autocorrelated process, an 
EWMA chart and a Shewhart individual chart on 

the residuals of an autoregressive moving average 
(ARMA) model of the process (see, e.g., 
Montgomery and Mastrangelo 1991; Lu and 
Reynolds 1999a) constitute two more examples. 
This is because the residuals themselves can be 
viewed as the output of a linear filter applied to xt.  
 More recent examples, in which the linear 
filter has a more complex structure than an EWMA, 
include the ARMA chart of Jiang, Tsui, and 
Woodall (2000) and Jiang (2001) and the PID chart 
of Jiang, Wu, Tsung, Nair, and Tsui (2002). A more 
complex filter structure, with more filter design 
parameters, creates the potential for better control 
chart performance, especially when the process data 
are autocorrelated. It may be difficult to take 
advantage of this potential, however, because of 
difficulty in properly selecting the design 
parameters. The only available guidelines are 
heuristic and rather anecdotal. An ARMA or PID 
chart that is not optimized may perform worse than 
a well-designed EWMA.  
 Recently, Apley and Chin (2004) proposed a 
compete generalization of the concept of a control 
chart based on linear filtering. They considered a 
control chart statistic of the form yt = H(B)xt, where 
H(B) = h0 + h1B + h2B

2 + . . . is a general linear 
filter (GLF) in impulse response form, with B 
denoting the time-series backshift operator and {hj: 
j = 0, 1, 2, . . .} denoting the impulse response 
coefficients. They treated this as an optimal filter 
design problem and developed a method for finding 
the filter impulse response coefficients that 
minimize the out-of-control average run length 
(ARL) for a specified mean shift of interest, under 
the constraint that the in-control ARL equals some 
desired value. They demonstrated that for step 
mean shifts in independently, identically distributed 
(i.i.d.) data, the optimal GLF (OGLF) coincides 
with a simple EWMA. For many autocorrelated 
processes, however, the OGLF has an intricate 
structure and can achieve much better ARL 
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performance than an optimized EWMA. We note 
that Apley and Chin (2004) directly optimized the 
design of a GLF of the form yt = H(B)et, where et 
denotes the residuals of an ARMA process model 
(see Section 2). There is no loss of generality in 
optimizing a GLF applied to et versus one applied 
to xt, and vice-versa, if the ARMA model is 
assumed stable and invertible. 
 One disadvantage of the method of Apley 
and Chin (2004) is that calculating the ARL for a 
GLF is so complex that certain approximations and 
Monte Carlo simulations are required in the GLF 
optimization algorithm. Moreover, the GLF can be 
somewhat cumbersome to implement, because it 
requires storage of the entire set of impulse 
response coefficients (up to a suitably large 
truncation time, after which the coefficients are 
essentially zero). In order to avoid these drawbacks, 
we propose as a control chart statistic a second-
order linear filter (SLF) of the form 
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where α1, α2, β and γ are the SLF design 
parameters to be determined. We include the 
scaling constant γ, because we use normalized 
control limits ±1. The filter in Eq. (1) is a special 
case of the GLF considered in Apley and Chin 
(2004), in which the filter is second-order and 
applied to the residuals, as opposed to xt.  
 As in Apley and Chin (2004), we focus on 
optimizing the design of the filter. Specifically, we 
develop an approach for selecting the SLF 
parameters α1, α2, β, and γ in order to minimize the 
out-of-control ARL under the constraint that the in-
control ARL equals some desired value. In Sections 
2 and 3 we describe our approach for calculating 
the ARL of the SLF and its gradient with respect to 
the filter design parameters, which is needed in the 
optimization algorithm. 
 Our focus on the filter design optimization is 
one aspect that distinguishes this work from the 
work on ARMA and PID charts. The heuristic 
design procedures suggested in Jiang et al. (2000) 
and Jiang et al. (2002) for the ARMA and PID 
charts are somewhat ambiguous and may result in 
control charts that perform far from optimal.
 Another difference between this work and 
the ARMA chart of Jiang et al. (2000) is that our 
SLF is applied to the residuals. In contrast, the 
ARMA chart is applied to the original data xt. 
Applying the SLF to the residuals has two 
advantages. First, for reasons that become apparent 
in the following section, it allows a more 

computationally feasible approach for calculating 
the ARL. This is important when optimizing the 
performance of the SLF. The approach is applicable 
for any ARMA process, regardless of the model 
order. Second, it appears that applying the SLF to 
the residuals results in better ARL performance 
than applying the SLF to the original data, evidence 
of which we present in Section 4. Indeed, for many 
of the examples that we will consider in Section 4, 
the performance of our optimized SLF almost 
equals that of the most general linear filter 
optimized in Apley and Chin (2004). 
 

2.  ARL CALCULATION 

 
 Throughout this paper, we assume that xt 
follows an ARMA process model of the form xt = 
Φ−1(B)Θ(B)at + µt, where µt represents the 
deterministic process mean, t is a time index, at is 
an i.i.d. Gaussian process with mean 0 and variance 
σ2, and Φ(B) = (1 – φ1B – φ2B

2 – ⋅⋅⋅ – φpB
p) and 

Θ(B) = (1 – θ1B – θ2B
2 – ⋅⋅⋅ – θqB

q) are the AR and 
MA polynomials of order p and q, respectively. The 
model residuals (i.e., the one-step-ahead prediction 
errors) are generated via the linear filtering 
operation (Apley and Shi 1999) 
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where tµ~  = Θ−1(B)Φ(B)µt is a filtered version of 

the deterministic mean shift µt. Thus, the residuals 
are an independent sequence of Gaussian random 
variables with variance σ2 and time-varying mean 

tµ~ .  

 The objective is to find the SLF 
parameters that minimize the out-of-control ARL 
for a specified mean shift µt (e.g., a step shift of 
size µ, represented by µt = 0 for t ≤ 0, and µt = µ for 
t > 0), while simultaneously constraining the in-
control ARL to some desired value. In order to 
accomplish this, we express the ARL as a function 
of the filter parameters using the following 
variation of the Markov chain approach of Brooks 
and Evans (1972). Define the vector Vt = (yt, zt)

T, 
where zt = α2yt−1 – γβet, and note that Vt can be 
written as 
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 Because Vt is a two-dimensional vector 
Markov process, two-dimensional Markov chain 
methods similar to those used in Runger and Prabhu 
(1996), VanBrackle and Reynolds (1997), and Jiang 
(2001) can be used to calculate the ARL of the 
control chart on yt. Although Jiang (2001) suggests 
using a three-dimensional vector Markov chain 
representation for a similar process, we have 
invoked the observable canonical form (Åström and 
Wittenmark 1990) of the filter dynamics in order to 
yield the two-dimensional representation in Eq. (2). 
The reduction in dimensionality substantially 
reduces the computational expense involved in 
calculating the ARL. It also eliminates the need for 
the Monte Carlo simulation used in Apley and Chin 
(2004) for optimizing a GLF. The result is that the 
algorithm for optimizing the SLF is much more 
computationally efficient than the algorithm for 
optimizing the GLF.  
 The two-dimensional Markov chain 
approach used in Runger and Prabhu (1996), 

VanBrackle and Reynolds (1997), and Jiang (2001) 
is easily applied to the present situation as follows. 
The two-dimensional state space for V = (y, z)T is 
discretized into a set of rectangles, as shown in 
Figure 1. The range of values for y extends to the 
upper and lower control limits ±1. Although the z-
axis technically extends out to ±∞, we may truncate 
this by defining the upper and lower limits (Lz, Uz) 
wide enough to ensure that zt lies between the limits 
with high probability. Let Nz denote the number of 
discretized subintervals along the z-axis, and let Ny 
denote the number of discretized subintervals along 
the y-axis between ±1. The in-control region 
therefore consists of N = Nz × Ny nonabsorbing 
states. The out-of-control region (y outside the ±1 
interval) is treated as a single absorbing state.  
 Let Qt denote the N×N transition probability 
matrix for the nonabsorbing states at time t. The ith 
row, jth column element (1 ≤ i,j ≤ N) of Qt, denoted 

ij

tQ , is defined as 
ij

tQ  = Pr{Vt ∈ Rj | Vt−1 = ri}, 
where Rj is the rectangle for state j, and ri is the 
centroid of Ri.  
 Eq. (2) implies that Vt|Vt−1 follows a 
degenerate bivariate normal distribution with mean 
DVt−1 + W tµ~  and rank-1 covariance matrix WWTσ2.  
In other words, Vt|Vt−1 is distributed along a one-
dimensional line in the two-dimensional state space, 
as illustrated in Figure 1. Each 

ij

tQ  can be 
calculated as the area under the normal density 

 

 

FIGURE 1.  Two-dimensional State Space Discretization in the Markov Chain Approach. 
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In other words, Vt|Vt−1 is distributed along a one-
dimensional line in the two-dimensional state space, 
as illustrated in Figure 1. Each 

ij

tQ  can be 
calculated as the area under the normal density 
curve for the segment of the distribution line that 
falls within rectangle Rj. If the distribution line does 
not pass through a particular rectangle, then the 
corresponding element of 

ij

tQ  is exactly zero. 
Therefore, although Qt is an N×N matrix, each of 
row of Qt contains less than max{2Ny,2Nz} nonzero 
elements. Because Qt is a sparse matrix, the 
computational expense in calculating the ARL is 
lessened. Jiang (2001) discusses in more detail how 
to take advantage of this sparseness. 
 Let Qt denote the N×N transition probability 
matrix for the nonabsorbing states at time t. The ith 
row, jth column element (1 ≤ i,j ≤ N) of Qt, denoted 

ij

tQ , is defined as 
ij

tQ  = Pr{Vt ∈ Rj | Vt−1 = ri}, 
where Rj is the rectangle for state j, and ri is the 
centroid of Ri.  
 Eq. (2) implies that Vt|Vt−1 follows a 
degenerate bivariate normal distribution with mean 
DVt−1 + W tµ~  and rank-1 covariance matrix 
WW

T2. In other words, Vt|Vt−1 is distributed along 
a one-dimensional line in the two-dimensional state 
space, as illustrated in Figure 1. Each 

ij

tQ  can be 
calculated as the area under the normal density 
curve for the segment of the distribution line that 
falls within rectangle Rj. If the distribution line does 
not pass through a particular rectangle, then the 
corresponding element of 

ij

tQ  is exactly zero. 
Therefore, although Qt is an N×N matrix, each of 
row of Qt contains less than max{2Ny,2Nz} nonzero 
elements. Because Qt is a sparse matrix, the 
computational expense in calculating the ARL is 
lessened. Jiang (2001) discusses in more detail how 
to take advantage of this sparseness. 
 The ARL can be approximated as (Brook 
and Evans 1972) 
 

ARL = 0π (I + Q1 + Q1Q2 + Q1Q2Q3 + ⋅⋅⋅)1,       (3) 
where 1 denotes a column vector of ones and 0π  
denotes the initial state probability vector. In all 
examples, we consider only the zero-state ARL. 
This is represented by setting all elements of 0π  
equal to zero except for the single element 
corresponding to the initial value {y0 = 0, z0 = 0}, 
which is set equal to one. Because Qt depends on t 
only via the time varying mean of the residuals, Qt 
approaches a steady-state value (denoted Q) as tµ~  
approaches a steady-state value. For sufficiently 
large m we therefore have Q ≅ Qm ≅  Qm+1 ≅  ⋅ ⋅ ⋅, 
and Eq. (3) becomes 

 

ARL = 1
1

1
∑

−

=

m

n

nb  + bm[I – Q]
–11,                            (4) 

where bn = ∏
−

=

1

10

n

l lQπ  = bn−1Qn−1 can be 

calculated recursively for n = 2, 3, . . ., m with b1 = 

0π . Lu and Reynolds (1999a) provide further 

discussion of this steady-state truncation in the 
Markov chain approach.  
 

3.  OPTIMAL FILTER DESIGN STRATEGY 

 
 We briefly describe the strategy for 
optimizing the vector of SLF parameters ζ = [α1 α2 

β γ]T. As inputs to the optimization routine, the user 
specifies the ARMA process model, a mean shift 
that is of particular interest (the type, as well as the 
magnitude), and a desired in-control ARL. The 
optimization algorithm then finds the filter 
parameters that minimize the out-of-control ARL 
for the specified mean shift, while providing the 
desired in-control ARL. The efficiency of the 
optimization routine is substantially improved by 
incorporating the gradient ∂ARL/∂, an expression 
for which we develop in this section.  

 Let ζk denote the kth element of ζ. 
Differentiating Eq. (3) gives 
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where m and bn are as defined in Section 2, and cn = 

[I + Qn+1 + Qn+1Qn+2 + ⋅⋅⋅]1 = 1 + Qn+1cn+1 can be 

calculated recursively for n = m−1, m−2, . . ., 1 with 

initial condition cm = [I + Q + QQ +⋅⋅⋅]1 = [I – Q]–

11. 
 Using Eqs. (4) and (5) for the ARL and its 
gradient, we have coded in MATLAB a 
straightforward gradient-based algorithm for 
optimizing the SLF parameters, which is available 
from the authors upon request. Note that numerical 
evaluation of ∂ARL/∂ζ in Eq. (5) involves roughly 
the same computational expense as evaluation of 
the ARL.  
 

4.  DISCUSSION AND EXAMPLES 
 

4.1  Comparison with the Optimal EWMA and 

the OGLF 

 In this section we compare the optimal SLF 
(OSLF) with the OGLF of Apley and Chin (2004) 
and with an optimized residual-based EWMA. The 
parameters of all three charts are optimized to 
minimize the out-of-control ARL while 
constraining the in-control ARL to equal 500. The 
residual-based EWMA is defined as 
                       yt = (1 − λ)yt−1 + get                                                      
where 0 < λ ≤ 1 is the EWMA parameter and g is a 
scaling constant. The chart signals when the 
EWMA statistic yt falls outside the control limits ±1. 
Note that the EWMA can be written as a first-order 
linear filter yt = H(B)et, where H(B) = (1 − (1 − 
λ)B)−1g, which has impulse response coefficients hj 
= g(1 − λ)j. Consequently, the optimal EWMA can 
be viewed as a more restrictive counterpart of the 
OSLF, whereas OGLF can be viewed as a more 
general counterpart. 
 The performances of all three charts depend 
heavily on the form and magnitude of the residual 
mean and on the ARMA model describing the 
process. Because of this, we compare performance 
for the same broad combination of scenarios that 
Apley and Chin (2004) considered, which are 
represented by the 28 examples listed in Table 1. 
The process models are all ARMA(1,1) of the form 
xt – φxt−1 = at − θat−1, which includes their special 
cases of first-order AR and i.i.d.  Without loss of 
generality, we assume σ = 1 for the remainder of 
the paper. We also consider three different types of 
mean shifts – step, spike, and sinusoidal – and a 
range of mean shift sizes that depends on the 
specific example. The step mean shift was defined 
in the previous section, and the spike mean shift is 
defined as µ1 = µ, and µt = 0 for t ≠ 1. The 

sinusoidal shifts are denoted S1—S4 in Table 1. S1, 
S2, and S3 are sinusoidal functions with 
amplitude .75 and periods of two, four, and eight 
observations, respectively. S4 has amplitude 1.5 and 
a period of eight observations.  
 Table 1 lists the out-of-control ARL values 
for all three charts for the 28 examples. All ARL 
values are zero-state values, and the in-control ARL 
was 500 in all cases. Although the Markov chain 
method was used to optimize the EWMA and the 
SLF, all ARL values shown in Table 1 were from 
Monte Carlo simulation with 250,000 replications. 
The standard errors of the ARL estimates are shown 
in parentheses. The optimized parameters for the 
EWMA and SLF are also shown. In the subsequent 
discussion, where of interest, we will show the 
impulse response coefficients for the OGLFs. The 
OGLF impulse response coefficients for all 28 
examples can be found in Apley and Chin (2004). 
 As shown in Apley and Chin (2004), the 
OGLF reduces to the simple-structured EWMA for 
the case of step mean shifts in i.i.d. processes 
(Examples 1—4). Consequently, because the SLF is 
contained within the class of GLFs, the OSLF also 
reduces to an EWMA. This is evident from α2 = β 
= 0 in Table 1 for Examples 1—4. Note that the 
optimal value of the EWMA parameter (λ = 1 − α1) 
becomes larger as the size of the mean shift 
increases, which is well known (Lucas and 
Saccucci 1990). 
 In many of the examples listed in Table 1, a 
substantial performance improvement can be 
achieved by increasing the complexity of the filter 
from the first-order EWMA to the SLF and the 
GLF. In most of the examples where the EWMA 
and OGLF performances differ most, the 
performance of the OSLF also is much better than 
the optimal EWMA, and almost as good as the 
OGLF. The exception to this is Example 28, for 
which the OSLF performs only slightly better than 
the optimal EWMA and substantially worse than 
the OGLF.  
 Consider Example 8, which is a step mean 
shift of magnitude 4σ in an AR(1) process with φ 

= .9. Note that the variance of xt is σ 2
x  = (1 

− φ2)−1σ2, and a mean shift of 4σ translates to only 
1.74σx. As illustrated in Figure 2(a), the residual 
mean in this case experiences a pronounced initial 
spike before dropping down to a much smaller 
steady state value. In situations like this, Lin and 
Adams (1996) and Lu and Reynolds (1999b) have 
recommended using a combined Shewhart-EWMA 
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TABLE 1.  ARL Comparison for the OSLF, the Optimal EWMA, and the OGLF. 
 Time Series 

Model  Shift  OGLF  Optimal EWMA  OSLF 

   

No. φ θ  

Type 

 

Size 

µ  ARL  

 
    λ 

 
g ARL  

 

         α1 

 

        α2 

 

       β 
 

γ 
 

ARL 

1 0 0  Step .5  28.82
(.03)

 .047 .1167 28.82
(.03)

  .953 .000 .000 .1167 28.82
(.03)

2     1.5  5.45
(.01)

 .242 .2179 5.45
(.01)

  .758 .000 .000 .2179 5.45
(.01)

3     3  1.86
(.00)

 .676 .3067 1.86
(.00)

  .324 .000 .000 .3067 1.86
(.00)

4     4  1.21
(.00)

 .887 .3216 1.21
(.00)

 .113 .000 .000 .3216 1.21
(.00)

            

5 .9 0  Step .5  355.31
(.57)

 .002 .0527 355.31
(.57)

 .998 .000 .000 .0527 355.31
(.57)

6     1.5  130.64
(.18)

 .007 .0654 130.64
(.18)

 .993 .000 .000 .0654 130.64
(.18)

7     3  46.91
(.10)

 .021 .0887 49.43
(.07)

 .863 .105 .784 .2754 47.26
(.10)

8     4  13.72
(.06)

 .038 .1080 29.78
(.05)

 .863 .105 .847 .2983 13.72
(.06)

            

9 .9 0  Spike .5  495.39
(.98)

 1.000 .3236 497.12
(1.00)

 −.070 .046 .869 .2368 496.83
(1.00)

10     1.5  422.01
(.98)

 1.000 .3236 454.46
(.99)

 −.071 .037 .872 .2364 427.08
(.98)

11     3  82.72
(.54)

 1.000 .3236 177.83
(.76)

 −.103 .001 .844 .2360 85.12
(.55)

12     4  6.72
(.14)

 1.000 .3236 28.70
(.32)

 −.069 .035 .872 .2367 7.12
(.15)

            

13 0 0  Sinusoid S1  15.79
(.02)

 1.000 .3236 124.20
(.42)

 −.558 .322 .326 .1506 15.79
(.02)

14     S2  30.69
(.04)

 1.000 .3236 226.61
(.68)

 −.026 −.903 −.243 .1494 30.69
(.04)

15     S3  32.90
(.04)

 .608 .2986 178.47
(.57)

 1.160 −.716 −1.208 .0849 43.30
(.08)

16     S4  10.61
(.01)

 .616 .2997 26.31
(.05)

 1.024 −.636 −1.070 .1068 11.46
(.01)

             

17 .9 -.9  Step .5  447.66
(.75)

 .002 .0527 447.66
(.75)

 .998 .000 .000 .0527 447.66
(.75)

18     1.5  139.26
(.54)

 .003 .0557 255.72
(.39)

 −.924 .007 −.039 .1399 163.10
(.71)

19     2  41.54
(.36)

 .004 .0584 194.09
(.28)

 −.924 .007 −.039 .1399 43.31
(.37)

20     3  3.12
(.03)

 1.000 .3236 76.23
(.49)

 −.861 −.045 −.084 .2051 3.21
(.04)

             

21 .9 .5  Step .5  205.04
(.30)

 .004 .0584 205.58
(.30)

 .996 .000 .000 .0584 205.58
(.30)

22     1.5  50.28
(.07)

 .021 .0887 50.28
(.07)

 .979 .000 .000 .0887 50.28
(.07)

23     3  10.77
(.03)

 .120 .1662 10.80
(.03)

 .879 .000 −.020 .1639 10.77
(.03)

24     4  2.74
(.01)

 .304 .2374 2.88
(.01)

 .696 .000 .000 .2374 2.88
(.01)

             

25 .9 .5  Spike .5  497.47
(.99)

 1.000 .3236 497.61
(.99)

 −.238 −.001 −.038 .3172 497.47
(1.00)

26     1.5  461.86
(.99)

 1.000 .3236 469.74
(.99)

 −.222 −.005 −.163 .3231 469.23
(.99)

27     3  208.77
(.80)

 1.000 .3236 259.67
(.87)

 −.220 −.006 −.185 .3234 259.77
(.88)

28     4  50.75
(.41)

 1.000 .3236 86.10
(.56)

 −.230 −.004 −.156 .3227 83.72
(.55)

 Note: The simulation standard errors are shown in parentheses. 
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Figure 2.  Residual Mean (a) and Impulse Responses of the OSLF and the OGLF (b) for Example 8. 

 
scheme (see Lucas and Saccucci 1990 and 
Reynolds and Stoumbos 2001 for additional 
discussion of combined Shewhart-EWMA charts). 
The shapes of the OSLF and OGLF impulse 
response functions shown in Figure 2(b) for 
Example 8 indicate that they have a close 
correspondence to a combined Shewhart-EWMA 
scheme. Note that the plots in Figure 2(b) were 
obtained by expressing both the OGLF and the 
OSLF in their impulse response forms yt = H(B)et, 
with H(B) = h0 + h1B + h2B

2 + . . .   Note also that 
the OSLF and OGLF are almost identical, in the 
sense that their impulse response coefficients nearly 
coincide.  
 The connection to a combined Shewhart-
EWMA scheme becomes more apparent if we write 
the OSLF in the following form, using the Example 
8 parameters from Table 1: 
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The first term, by itself, represents a scaled version 
of a Shewhart individual chart on the residuals. The 
second term, by itself, represents a scaled version of 
an EWMA with a small value λ = 1 − .971 = .029 
for the EWMA parameter. Consequently, the OSLF 
and OGLF for Example 8 are essentially a weighted 
combination of a Shewhart individual chart and an 
EWMA chart, as can be seen in Figure 2(b). 
Whereas the typical combined Shewhart-EWMA 
scheme charts the two statistics separately but 
simultaneously, the OSLF combines them together 
into a single statistic yt. In spite of this difference, 
we would expect the two charts to behave similarly. 
The Shewhart component is effective at detecting 
the initial spike in the residuals, and the EWMA 
component with small λ is effective at detecting the 

small but sustained steady-state shift in the residual 
mean. One attractive feature of the OSLF is that the 
relative weighting of the two components is 
selected optimally, in order to minimize the ARL.  
 The OSLFs in Examples 5—7 can be 
similarly viewed as combined Shewhart-EWMA 
charts, where the relative weighting of the Shewhart 
component decreases as the size of the mean shift 
decreases. When the mean shift size decreases, so 
does the prominence of the initial spike in the 
residuals, and one must rely more heavily on the 
EWMA component to detect the sustained shift in 
the residual mean. 
 The OSLF and the OGLF are also quite 
similar for the AR(1) processes with φ = .9 and 
spike mean shift (Examples 9 through 12 in Table 
1), and both outperform the optimal EWMA for 
large mean shifts. Figure 3(a) shows the residual 
mean for Example 12, and Figure 3(b) shows the 
corresponding impulse response coefficients for the 
OSLF and the OGLF. The reason why the OSLF 
and OGLF outperform the optimal EWMA in this 
case is apparent from Figure 3. The residual mean 
oscillates above and below zero on the first two 
observations following the shift. Both the OSLF 
and the OGLF are tuned to detect this oscillation, in 
the sense that their impulse response coefficients 
also oscillate.  
 

5.  CONCLUSIONS 

 
 In this paper, we proposed a control charting 
procedure based on a second-order linear filter 
applied to the residuals of an ARMA process model. 
We used a two-dimensional vector Markov chain 
method to calculate the ARL as a function of the 
filter parameters, and we derived an expression for 
the derivative of the ARL that is used in a gradient-
based algorithm for optimizing the filter parameters.
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Figure 3.  Residual Mean (a) and Impulse Responses of the OSLF and the OGLF (b) for Example 12. 
 
 We have demonstrated with a number of 
examples that the OSLF can perform substantially 
better than an optimized EWMA, and almost as 
good as the most general linear filter with 
optimized impulse response coefficients. One 
advantage of the OSLF over the OGLF is that it can 
be optimized using a more computationally 
efficient algorithm that avoids the need for Monte 
Carlo simulation. Another advantage is that the 
OSLF can be more easily implemented, using its 
recursive form. The OGLF has no equivalent 
recursive form and must be implemented in impulse 
response form, which requires storage of the entire 
set of impulse response coefficients.  
 In situations where the OGLF performs 
substantially better than the OSLF (e.g., Examples 
15 and 28), the OSLF still has some utility. As 
discussed in Apley and Chin (2004), the 
optimization algorithm for the OGLF can be 
sensitive to the initial guess for the design 
parameters. A reasonable strategy for optimizing 
the OGLF is to first find the OSLF (the 
optimization algorithm for which is more stable and 
robust), and then use the OSLF impulse response 
coefficients as the initial guess for the OGLF.  
   

REFERENCES 

Apley, D. W., and Chin, C. (2004), “An Optimal 
Filter Design Approach to Statistical Process 
Control,” Submitted for Publication. 

Apley, D. W., and Shi, J. (1999), “The GLRT for 
Statistical Process Control of Autocorrelated 
Processes,” IIE Transactions, 31, 1123−1134. 

Åström, K. J., and Wittenmark, B. (1990), 
Computer Controlled Systems: Theory and 

Design (2nd ed.), Englewood Cliffs, NJ: 
Prentice Hall. 

Brook, D., and Evans, D. A. (1972), “An Approach 
to the Probability Distribution of CUSUM Run 
Lengths,” Biometrika, 59, 539−549. 

Chin, C. (2004), “Optimal Filter Design 
Approaches to Statistical Process Control for 
Autocorrelated Processes,” Unpublished Ph.D. 
Dissertation, Texas A&M University, Dept. of 
Industrial Engineering.  

Jiang, W. (2001), “Average Run Length 
Computation of ARMA Charts for Stationary 
Processes,” Communications in Statistics− 
Simulation and Computation, 30, 699-716. 

Jiang, W., Tsui, K., and Woodall, W. H. (2000), “A 
New SPC Monitoring Method: The ARMA 
Chart,” Technometrics, 42, 399−410. 

Jiang, W., Wu, H., Tsung, F., Nair, V. N., and Tsui, 
K. (2002), “Proportional Integral Derivative 
Charts for Process Monitoring,” Technometrics, 
44, 205−214. 

Lin, S. W., and Adams, B. M. (1996), “Combined 
Control Charts for Forecast-Based Monitoring 
Schemes,” Journal of Quality Technology, 28, 
289–301. 

Lu, C., and Reynolds, M. R., Jr. (1999a), “EWMA 
Control Charts for Monitoring the Mean of 
Autocorrelated Processes,” Journal of Quality 
Technology, 31, 166−188. 

Lu, C., and Reynolds, M. R., Jr. (1999b), “Control 
Charts for Monitoring the Mean and Variance 
of Autocorrelated Processes,” Journal of 

Quality Technology, 31, 259−274. 
Lucas, J. M., and Saccucci, M. S. (1990), 

“Exponentially Weighted Moving Average 
Control Schemes: Properties and 
Enhancements,” Technometrics, 32, 1−12. 

Montgomery, D. C., and Mastrangelo, C. M. (1991), 
“Some Statistical Process Control Methods for 
Autocorrelated Data,” Journal of Quality 

Technology, 23, 179-193. 
Reynolds, M. R., Jr., and Stoumbos, Z. (2001), 

“Monitoring the Process Mean and Variance 
Using Individual Observations and Variable 
Sampling Intervals,” Journal of Quality 

Technology, 33, 181−205. 

0 5 10 15

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15

-0.2

-0.1

0

0.1

0.2

tµ~

(b) (a) 

hj 

j t 

OSLF : 
OGLF:  

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집



 9 

Roberts, S. W. (1959), “Control Chart Tests Based 
on Geometric Moving Averages,” 
Technometrics, 1, 239-250. 

Runger, G. C., and Prabhu, S. S. (1996), “A 
Markov Chain Model for the Multivariate 
Exponentially Weighted Moving Averages 
Control Chart,” Journal of the American 
Statistical Association, 91, 1701–1706. 

VanBrackle, L. N., III, and Reynolds, M. R., Jr. 
(1997), “EWMA and CUSUM Control Charts 
in the Presence of Correlation,” 
Communications in Statistics− Simulation and 
Computation, 26,  979–1008. 

 

 

대한산업공학회/한국경영과학회 2006 춘계공동학술대회 논문집


	MAIN



