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Abstract— In this paper, we review decision feedback equalizer
(DFE). From the DFE structure, error propagation is inevitable
phenomenon. We start with a comprehensive signal model in-
cluding error propagation. Based on this signal meodeling, we
derive new equations for the DFE filter which support the
enhanced bit error rate (BER) performance. Newly derived filter
equation considers the decision error propagation and computes
the optimal soft bit Log-Likelihood Ratie (LLR) metric for soft
input Viterbi decoder. In the simulation section, we compare
the performance of two systems and show the performance
improvement when adopting the proposed technique.

I. INTRODUCTION

Channel equalization techniques have been widely used by
communication engineers to mitigate the effects of the inter-
symbol interference (ISI) of a channel in many communication
systems. Among them, a decision feedback equalizer (DFE)
is one popular equalization structure as a practical detection
scheme [1], [2].

The DFE decodes channel inputs on a symbol-by-symbol
basis and uses past decisions to remove trailing ISI. The
feedforward filter in the DFE tries to concentrate the channel
energy into the first sample, and then the feedback filter can-
cels the trailing ISI using previous decisions. The minimum-
mean-square-error decision feedback equalizer (MMSE-DFE)
optimizes the feedforward and feedback filter to minimize the
mean square error (MSE)[3].

Channel coding gives better performance than uncoded
system because it gives immunity to channel by inserting
the redundancy [4]. The DFE can also be used in the coded
systems as part of a separate equalization and decoding scheme
[5]. Hence we connect the convolutional coding to the MMSE-
DFE. Compared with the uncoded MMSE-DFE system, this
scheme performs better but is more complex and incur larger
overall decoding delay. In the coded MMSE-DFE system, we
need a soft output demapper which produces a log-likelihood
ratio (LLR) values for soft input Viterbi decoder. For obtaining
the LLR, we employ the soft output demapper at the receiver
{6]. In soft output demapper, the noise variance has a great
important role to obtain the performance.

The DFE is inherently a nonlinear receiver. However, it
can be analyzed using linear techniques, if one assumes all
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Fig. 1. Coded decision feedback equalizer

previous decisions are correct. But in practice, this may not
be true, and can be a significant weakness of decision feedback
that cannot be overlooked. Actually there are some papers to
handle the mitigating of the error propagation effects in the
DFE system [7], [8].

Therefore, in this paper, we focus an error propagation
of the coded MMSE-DFE receiver. First, we analyze the
DFE algorithm which takes the error propagation effect into
account. By including the decision errors into the equalizer
formulation, an improved detection performance is attained.
Based on the analysis of the equalization process with error
propagation, we newly derive mean-square error and their
variance. With this compensated variance, we propose the
coded MMSE-DFE system whose the demapper can works
with more accuracy.

The paper is organized as follows: In section II, the system
model for the conventional DFE is presented. The enhanced
DFE structure and derived filter tap are proposed in section
II1. Also error compensated variance for soft output demapper
is described in section III. Finally, the simulation results and
a conclusion are presented in sections IV and V, respectively.

II. CONVENTIONAL DFE MODEL

Before presenting the proposed scheme, we review the
conventional DFE system. The structure of the conventional
DFE is shown in Fig. 1. We assume that the pulse response
h(t) extends over a finite interval 0 < t < vT, where T
denotes the symbol period. The channel model is given by

y(t) = > Tmh(t — mT) + n(t) )
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