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ABSTRACT

The incompressible flow simulations are usually based on the incompressible Navier-Stokes
equations. In the incompressible Navier-Stokes equations, we have to solve not only momentum
equations but also elliptic partial differential equation (PDE) for the pressure, stream function
and so on. The elliptic PDE solvers consume the large part of total computational time, because
we have to obtain the converged solution of this elliptic PDE at every time step. Then, for the
incompressible flow simulations, especially the large-scale simulations, the efficient elliptic
PDE solver is very important key technique.

In the parallel computations, the parallel performance of elliptic PDE solver is not usually high
in comparison with the momentum equation solver. When the parallel efficiency of elliptic PDE
solver is 90% on 2 processor elements (PE)s, that is, the speedup based on 1PE is 1.8, the
speedup on 128PEs is about 61 times of 1PE. This shows that we use only a half platform
capability. On the other hand, the momentum equation solver shows almost theoretical speedup
[1,2]. Therefore, it is very urgent problem to improve the parallel efficiency of elliptic PDE
solver.

In this paper, the parallel property of elliptic PDE solver, i.e., the pressure equation solver, with
variable order multigrid method [3] is presented. Also, the improvement of parallel efficiency is
proposed. The present elliptic PDE solver is applied to the direct numerical simulation (DNS) of
3D turbulent channel flows. The message passing interface (MPI) library is applied to make the
computational codes. These MPI codes are implemented on PRIME POWER system with
SPARC 64V (1.3GHz) processors at Japan Atomic Energy Research Institute (JAERI).

The incompressible Navier-Stokes equations in the Cartesian coordinates can be written by
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where u; (i=1,2,3) denotes the velocity, p the pressure and v the kinematic viscosity. The
pressure equation can be formally written by
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where fis the source term.

The pressure equation (3) is solved by the variable order multigrid method with Neumann
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boundary conditions. As the relaxation scheme, the checkerboard SOR method and RRK
scheme [4] are adopted. In the RRK scheme, the unsteady term in pseudo-time -is added to
Eq.(3).
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For the parabolic PDE in pseudo-time, Eq.(4), the RRK scheme can be written by
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where Q denotes the spatial discretization operator, At is the pseudo-time step and the operators

such as (g,g3) denote inner product of vectors g; and g;. The coefficients b,, b,, and ¢, satisfy
the relations b;+b,=1, ¢c,=-1/2.

p

First, the 2D case with the source term f=-5cos(x)cos(2y) and the Neumann boundary conditions
d p/ 3 x=0 is considered. The work unit until convergence is shown in Fig. 1. In both relaxation
schemes, the multigrid convergence can be obtained and the RRK scheme has the independent
property of spatial accuracy. Figure 2 shows the parallel efficiency defined by

Efficiency = Tongte x100(%) , : (6)
paralel

where N denotes number of PEs, Typge and Tparane are the CPU time on single PE and NPEs,
respectively. In Fig.2, the RRK scheme shows the higher efficiency than the checkerboard SOR
method. In order to improve parallel efficiency, we consider the restriction of PE on coarser
multigrid level. Figure 3 shows the parallel efficiency with the restriction of PE on coarser than
64x32 grid level. In Fig.3, version 1 and version 2 denote the parallel efficiency without and
with restriction of PE on coarser multigrid level. It is clear that the parallel efficiency can be
improved.

Next, the DNS of 3D turbulent channel flows is performed by the variable order method of lines
[2]. The order of spatial accuracy is the 2nd order and the number of grid points are 32x64x32
and 64x64x64 in the x, y and z directions. The numerical resuits with Reynolds number Re =150
are compared with the reference database of Kasagi et al. [5]. Figures 4-6 show the mean
streamwise velocity, velocity fluctuation, Reynolds shear stress profiles, respectively. The
present DNS results are in very good agreement with the reference spectral solution.

Table 1 shows the parallel efficiency of 2nd order multigrid method in the DNS of 3D turbulent
channel flow. As the number of grid points is larger, the parallel efficiency becomes higher. In
comparison with the checkerboard SOR method, the RRK scheme has the higher parallel
efficiency in version 1 and version 2. Also, the multigrid method with version 2 shows higher
parallel efficiency.
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Fig. 1 Multigrid convergence for 2D problem.
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Fig. 2 Parallel efficiency for 2D problem.
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Fig. 3 Improvement of parallel efficiency.

Then, it is concluded that the present variable order multigrid method with RRK scheme has the
high parallel efficiency and the present paralle]l approach is very hopeful to simulate the large-

scale incompressible turbulent flows.
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Table 1 Parallel efficiency for 3D turbulent channel flow.

Checkerboard SOR method RRK scheme |
32x64%32 Time(sec./step) | Efficiency(%)| Time(sec./step) [ Efficiency(%o)
Single - 0.711 - 1.113 -
Parallel (version 1) 0.147 60.459 0.207 67.210
Parallel (version 2) 0.143 62.150 0.188 74.003
64x64x64 Time(sec./step) | Efficiency(%)| Time(sec./step) [ Efficiency(%)
Single 3.711 - 7.731 -
Parallel (version 1) 0.628 73.865 1.242 77.812
Paraliel (version 2) 0.582 79.704 1.120 86.307
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