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ABSTRACT

It is well known that many transport problems appearing in the study of fluid motion, heat
transfer, astrophysics, oceanography, meteorology, semiconductors, hydraulics, pollutant &
sediment transport and chemical engineering, can be reduced to convection-diffusion equation
subject to certain initial and boundary conditions. Several effective high order accutate
schemes have been proposed to simulate the equation, such as ADI, Crank-Nicolson, operator
splitting method, Eulerian-Lagrangian method, Finite Element method, Boundary Element
method, TVD method, high order upwind biasing method, High Order Compact schemes and
so on. However, many of these schemes need to cost more computing time and data storage
when applied to model the large scale transport problems, since they are implicit or more
complicated and expensive. With respect to the time integration, there are two mainly
numerical methods for Computational Fluid Dynamics(CFD) to solve the
convection-diffusion equations, implicit and explicit schemes. Implicit schemes often exhibit
unconditional stability for governing equations, but involve more complex code, more
computational time and storage per iteration. Explicit schemes are usually conditionally stable
but are relatively easy to program, require less computational time and storage per iteration.
In CFD, the numerical schemes which possess of the advantages of both explicit and implicit
algorithm are intriguing. Hence, a fourth-order alternating group explicit (AGE) parallel
scheme for solving the unsteady convection-diffusion equation is presented and discussed in
this paper. It was derived basing on the local series expansion method which is an effective
approach for derivation of general formulas to approximate the partial differential equation.
The approach is brieﬂy outlined as below:

For the sake of simplicity, we consider the one-dimensional convection-diffusion
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The solution domain [0,1]x[0,7] of the problem is covered by a mesh of grid-lines
x, =iAx and ¢, =kAt parallel to the space and time coordinate axes, respectively.

Approximations ¢i" to @(iAx,kAt) are calculated at point of intersection of these lines,

(iAx,kAt) which is referred o as the (i,k) grid-point. In the spatial and temporal

subdomain [x,_,,x,,,]x[k,k+1] shown in Fig.1, the value of @**' can be approximated by

1

the (N)th-oder taylor series expansion as:
N .
$x,7) =2 a;()- 1’ @
j=0 .

where y =x—x;, t=t—t,, a() isthe unknown function of time and N is the order of

the taylor series expansion. In present paper, N =4 is chosen for deriving the AGE
formulas composed of six points in two temporal levels for the convection-diffusion equation:
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Fig.1 The computational schematics of the local series expansion method

Substituting Eq.(2) into Eq.(1),and let y =0, 7 = A¢, we can obtain

8" = a,(0)—u-At-a,(0)+(2-D- At +u* - (At)?)- 4, (0) +[~6- D-u- (A1) —1* - (Af)' | a,(0)

(3)
+[12:D* (A +12-D-u* - (ALY +u* - (A" |- a,(0)

If N=4, 1t is shown that there are five unknown constants a,(0), ¢,(0), a,(0),
a,(0)and a,(0) in Eq.(3). If five different nodal values of ¢ are chosen to be substituted

into Eq.(2), the values of a,(0), a,(0), a,(0), a,(0)and a,(0) can be determined and
the specific expression of Eq. (3) can be obtained.

When choosing the different five nodal values of ¢ shown in Fig.1, we can obtain three
formula:
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B::l k+1+Bk+1 ¢k+l+Bk+l ¢'k+1 ¢, I+Bk ¢ + :.1 (5)
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where A4,B,C are coefficients. It is shown that the Eq.(4), Eq.(5) and Eq.(6) are are implicit

formulas. Combining the use of the Eq.(4), Eq. (5) and Eq.(6), we can obtain the exp11C1t
version of the system (4)-(6):
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Where E is the matrix coefficients derived in the full paper and Eq.(7) is the proposed
fourth-order alternating group explicit (AGE) parallel scheme for solving the unsteady
convection-diffusion equation

The validity of the proposed method is tested by a one-dimensional convection-diffusion
equations with a Sharpe pulse type concentration and also compared to the conventional
schemes include: (i) the Lax — Wendroff (LW) scheme; (ii) the Crank-Nicolson (CN) scheme,
(iii) the fourth-order implicit scheme (4th Implicit) and (iv)the D.J.Evans scheme (Evans)

described in D.J.Evans and A.R.B. Abdullah [2]. Three cases (for different s ___uEAt and
DAt

2

r= ) were considered in this paper which described the convection dominated flow

problems and the numerical results are shown below.
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Case(b). s=0.8 =004 Pe=s/=20
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