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ABSTRACT

While the computational requirements for computational fluid dynamics (CFD) have
been increased, today’s supercomputers are confronted with difficulties in performance
improvement at reasonable cost. This is because of their general-purpose feature result-
ing in inefficient hardware-resource utilization to accelerate any applications without
discrimination. Such circumstances have motivated researchers to develop special-
purpose processors tailored for each individual application. In this paper, we propose a
massively parallel processor for high-performance difference scheme computations,
which is based on the systolic architecture. We show an FPGA-based prototype design
to accelerate the fractional step method [1], and discuss its expected performance.

Several researchers have studied special-purpose computers for CFD. Hauser showed
initial efforts of an FPGA-based computer for a basic, compressible flow solver[2]. Af-
ter describing a numerical method of the flow solver, he reported that operations of vec-
tors and matrices; dot-product, matrix-vector and matrix-matrix multiplication, were
implemented to be used as basic components of the flow solver. Although the attempt to
utilize FPGAs for a CFD solver is interesting, the algorithm and its parallelism to be
exploited were not discussed well from aspects of computer architectures.

We focus on the systolic architecture for a systolic algorithm to efficiently perform
difference schemes. An algorithm that can efficiently be performed on a systolic array is
referred to as a systolic algorithm. The systolic array proposed by H.T. Kung et al. [3] is
a regular arrangement of many simple processing elements (PEs) in an array where data
are processed and flow synchronously across the array between neighbours. In addition
to massive parallelism of the systolic array, our proposed systolic computational mem-.
ory architecture [4][5] has an advantage of wide and scalable memory-bandwidth due to
local memories distributed among PEs. Thus the systolic array has significant scalabil-
ity in terms of computation and memory access, which avoid the bottleneck of the con-
ventional general-purpose microprocessors. In a basic systolic algorithm, at each step,
individual PE takes in data from one or more neighbours, processes them and outputs
the results to other neighbours. A difference scheme that gives discrete forms of differ-
ential equations inherently matches the systolic algorithm because it relies on calcula-
tion with values of adjacent lattice points.

While the general curvilinear coordinate can be applied to our proposal, we use a 2D
regular orthogonal grid as an example for brief discussion. A incompressible flow gov-
erned by the following equations is solved by the fractional step method.

vV =0, (1)
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Fig.1 2D staggered mesh. .
Fig. 2 Overview of the proposed array-
based processor with 2x2 PEs.

aa—’:+(V-V)V=—V¢+vv2V (2)
where V', ¢, v and ¢ area Ve'locity vector(=(u, v)), a pressure(=P) divided by
density, a kinematic viscosity and time, respectively. The fractional step method to
solve these equations is composed of the following three steps.
Stepl: Calculate a tentative velocity ¥~ with the equation of motion ignoring the pres-
sure term.

Vo=V + a{-@" VW £ vV 3)
Step2: Calculate ¢ of the next time step with ¥* by solving the following Poisson’s
equation.

*
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Step3: Calculate the velocity of the next time step V"' with V' and ¢™'.
Vel =y — AV )

In the case of 2D flow, the difference scheme of the 2nd-order accuracy gives the fol-
lowing equations for the 2D staggered mesh shown in Fig. 1.

Stepl:
u:,j = au; +bu, +eu’  +du  +teu (6)
v:j. = av,’fj +bvv,."+,,j +cvv,.”_[’j +dvv,.'fj+1 -Fevv:j_1 @)
where
1 1 1% U
a=1-2v At —+— |, b, = At 2___¢ ,
Ax® Ay Ax®  2Ax
v ui ] 1 4 vonu v vonu
¢, =M —5+—=|, d, =M —-—"=|, ¢, =Al| —+
Ax® 2Ax Ay®  2Ay Ay 2Ay
1
and vonu = Z(vi,j—l + vl,/’ + vi+],j—l + vi+1,j )
b,, c,, d,, e, and u_  are calculated similarly.

Step2: (Gauss-Seidel method)
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Step3: _
n+l1 * At ’ ’ n+l _ * At ' '
U, =U;; ‘Zx'(q’m,j _¢i,j) and Viji =V _Z;(@,jn "¢’i,j)- ®
Once u_,, and v_, are calculated at each grid point (i,j), Eqs.(6) and (7) of Step 1
can be written in the general form,;
x,.'jj.“’ =A+Bx, , + me)j. +Dx,_, +Ex,  + Fx,.,j_1 (10)

where x,; is a certain value at grid (i, j), and 4, B, C, D, E and F are values that can be

calculated only with values at grid (i, j). Eqs.(8) and (9) of Steps 2 and 3 can also be
formulated in Eq.(10). Even if we apply SOR method in Step 2, its iterative equation
can be expressed in the same form.

Steps 1 to 3 written in the form of Eq.(10) are considered as a systolic algorithm due
to their regularity and locality at each grid point. This means that the fractional step
method can be implemented on an appropriate systolic array. Since calculation for grid
(i, j) requires values of its adjacent grids, necessary communication is limited to the lo-
cal area. Based on this key idea, we propose a dedicated processor relying upon a sys-
tolic array structure to accelerate the fractional step method.

Fig. 2 shows the basic architecture of the proposed processor for a 2D CFD solver.
Note that we can easily expand an array into larger one of nxm PEs. The proposed
processor has the systolic array structure with a 2D mesh network. Each PE has -
north(N-), south(S-), west(W-) and east(E-) registers connected to the four adjacent PEs,
respectively. We call these registers communication registers. Once the PE writes an
value onto these registers, the adjacent PEs can read and use them for computation at
any time. The data-path of the PE shown in Fig. 2 is depicted simply for conceptual ex-
planation. Each PE also has an arithmetic logic unit (ALU) with three inputs of a, b and
¢, which can compute a+bc or (a+b)c because such computations are frequently

performed in the fractional step method. The register file of the PE stores necessary co-
efficients and variables. The accumulator, “Acc”, is used to efficiently sum up the terms
of Eq.(10). The ALU accepts the outputs of the register file or the values read from the
adjacent PEs via the multiplexer, “MUX.”

The register file is a local memory of the PE, and therefore the whole array can be
considered as a computational memory composed of the distributed local memories.
This is our systolic computational memory architecture where data stored in a memory
are computed by the memory itself. This architecture inherently avoids the memory-
processor bottleneck and has significant scalability; the larger array can scale up its
computational performance with its overall memory bandwidth.

The calculation of Eq.(10) is simply performed on the systolic array. Firstly, the reg-
ister files of PEs are initialised by using the communication registers as shift registers.
Then, the terms of Eq.(10) are computed and summed up onto the accumulator one by
one. This operation is synchronously performed by all the PEs while appropriate data
are written to the communication registers at an appropriate time for communication. In
the simple case that we can prepare the same number of PEs as grid points, we can eas-
ily map the calculation at a grid point to each PE. When we have less PEs than grid
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Fig. 3 PCI board with two Stratix II FPGAs (Courtesy of The DiNI group).

points, each PE takes charge of a grid block containing multiple grid points. For the
former case, we have scheduled all computations and communications necessary for
Steps 1 to 3 of the systolic algorithm.

We designed the PE for FPGA-based prototype implementation. Field-programmable
gate array (FPGA) is a semiconductor device containing programmable logic compo-
nents and programmable interconnects with memory elements and embedded arithmetic
units. We made sure that our designed 32-bit single-precision floating-point adder of the
PE can operate at more than 7SMHz on ALTERA Stratix Il FPGA (EP2S180-5). Since
the hardware resource consumed for the adder is less than 0.5 % of the EP2S180 FPGA,
we estimate that about 200 PEs on a prototype PCI board can be integrated with the two
FPGA chips shown in Fig.3. The peak performance of the integrated 200 PEs, each of
which has an adder and a multiplier operating at 7SMHz, would reach 30Gflops of sin-
gle-precision floating-point calculation. Although the Pentium 4 processor running at
3.8GHz has the peak performance of about 15Gflops for single-precision calculation,
it’s very difficuit to maintain the peak performance for actual applications due to the
limited memory-bandwidth. On the other hand, the distributed local memories of our
systolic-based processor allow the ALUs to fully be utilized. If we could implement our
proposed processor by using the same technology and hardware resources as such a
high-end microprocessor, much higher frequency and integration of PEs would lead to
tremendous performance of difference computation with a single chip.
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