Improving Korean Part-of-Speech Tagging Using The Lexical Specific Classifier

어휘별 분류기를 이용한 한국어 품사 부착의 성능 향상

  • 최원종 (고려대학교 컴퓨터학과 자연어처리연구실) ;
  • 이도길 ;
  • 임해창 (고려대학교 컴퓨터학과 자연어처리연구실)
  • Published : 2006.10.13

Abstract

한국어 형태소 분석 및 품사 부착을 위해 지금까지 다양한 모델들이 제안이 되었으며 어절단위 평가로 95%를 넘는 성능을 보여주는 자동 태거가 보고 되었다. 하지만 형태소 분석 및 품사 부착은 모든 자연어처리 시스템의 성능에 큰 영향을 미치므로 작은 오류도 중요하다. 본 연구에서는 대상 어절의 주변 형태소의 어휘와 품사 자질, 그리고 어절 자질을 이용하여 분류기를 학습한 후 자동 태거의 품사 부착 결과를 입력으로 받아 후처리 하는 어휘별 분류기를 제안한다. 실험 결과 어휘별 분류기를 이용한 후처리만으로 어절단위 평가 6.86%$(95.251%{\rightarrow}95.577%)$의 오류가 감소하는 성능향상을 얻었으며, 기존에 제안된 품사별 자질을 이용한 후처리 방법과 순차 결합할 경우 16.91%$(95.251%{\rightarrow}96.054%)$의 오류가 감소하는 성능 향상을 얻을 수 있었다. 특히 본 논문에서 제안하는 방법은 형태소 어휘까지 정정할 수 있기 때문에 품사별 자질을 이용한 후처리 방법의 성능을 더욱 향상시킬 수 있다.

Keywords