

Constructing relationships in a hierarchical file system

Young Woo Yoon

Information and Communications University

zeroyy@icu.ac.kr

Abstract

We propose a scheme for more efficient navigation in a hierarchical file system. In

the proposed scheme, a program running in the background computes the degree of

relationship between a current file and others, and builds a list of the most related files.

The current relationship metric being used by the program is a linear combination of

five parameters: the name, the directory path, the type, the created time, and the last

accessed time of a file. A simulated annealing algorithm is used in order to determine

the weighting factors of the parameters. A set of experiments were conducted in order to

access the effectiveness of the proposed scheme.

Keyword : graphical user interface, hierarchical file system, more related files,

relationship metric, simulated annealing

1. INTRODUCTION

Most operating systems including Windows, UNIX,

and Linux use hierarchical file systems. In a hierarchical

file system, users usually arrange related files in the

same directory and classify files in a tree according to

the contents of files. However, a file in some directory

may also have a relationship with files in other distant

directories. For example, users may reuse a source

code file that was written for another programming

project for the current project. In this case, users have

to travel several directories to reach the related files.

Using a shortcut to a file in MS Windows or a soft link

in UNIX systems, users can specify explicitly remote

files that are related to files in the current directory.

However, it is a troublesome work to specify

relationships between files manually when there are a

lot of files in a file system. It is too demanding,

though not impossible, to specify relationships between

all the files.

We propose in this paper a scheme that provides links

to related files automatically for more efficient

navigation in a hierarchical file system. The central

part of the scheme is a computational method of

constructing relationships between files and directories

automatically. In the proposed scheme a navigation

helper program suggests a list of related files with the

current document on request. The ideal goal of the

proposed scheme is to enable users to access related

files mostly from the list of suggested files, thereby

obviating the need to traverse up and down a complex

directory hierarchy.

The overview of the whole system is described in

Section 3, the implementation and design details are

given in Section 4, and the results of some experiments

with the proposed scheme is given in Section 5.

2. RELATED WORKS

Several researchers have tried to improve the

usability of the hierarchical file system. One of the

works is ‘Sifting through Hierarchical Information’ by

Doug Schaffer and Saul Greenberg [1]. They tried to sift

the files based on their attributes like a name, a type, a

created time, and so on. Similar approaches can be seen

in ‘Semantic File System’ [2] and ‘Improving the

1권 902

Usability of the Hierarchical File System’ [3]. These

works consider the attributes of the files to classify the

files. But the outcome is not beyond simple hierarchical

structures. To overcome the shortcomings of these

hierarchical structures, this paper proposes the web

structure by assigning the relationships between the files.

3. SYSTEM DESIGN

The system that we implemented shows the related

files for a file. Based on the file information, the system

compares the source file with the others (target files)

then shows ten files in order of the similarity. At here,

the similarity means a kind of semantic similarity of the

files. In other words, if some files are related to a

project, the files have a high degree of the similarity.

3-1. Related Attributes

To construct the relationship automatically, we need

some attributes that determines the degree of the

similarity between the files. We just consider the

fundamental properties of the files, not user-specified

properties. Users have to write the descriptions for a few

thousand of files. They dislike this bothering work [1]

[4]. Therefore, we consider name, path, type (extension),

created time, and last accessed time of the files. These

attributes are primitive properties that the operating

system supports. Moreover, users tend to make the

meaningful name of the file according to the contents of

the files. In addition, users classify the similar files into

the same directories or the same hierarchies. Therefore,

the name and path of the files can be good relevant

attributes.

When the users are in a work, they may create the

related files one after the other, and also users access the

files sequentially. Accordingly, these two factors of

created and last accessed time may be used to compare

the similarity. We also consider the type of the files

because users would access the files of a type to

reference.

From these factors, the similarity between two files

can be calculated through the relationship expression

that gives a numeric value of the similarity between two

files. Here, each property should be represented in

numeric value to construct the relationship expression.

The relationship expression is discussed in Section 2.2

and 4.3 in details.

For the name of files, the system uses the length of

LCS (longest common subsequence) that is a well-

known measure at comparing two strings. At here, the

system divides the length of target file name to prevent

taking advantage of the length of name from the length

of LCS.

name
V = (length of LCS) ÷ (length of target file name)

For the path of files, the system counts the number of

same parent directories for the source and target file

from the root directory. For example, suppose there are

two files - ‘c:\foo\bar\paper.doc’ and ‘c:\foo\present.ppt’.

From root directory, they have two same parent

directories ‘c:’ and ‘foo’. Moreover, we assumed that a

deep directory – a far from root directory - is more

classified, so the system doesn’t divide the value of the

target file like above.

path
V = (number of same parent directory)

For the type (extension) of file, the system marks the

value one or zero. If two files have same type, the

system marks one, otherwise zero.

type
V = (same type ? 1 : 0)

For the time factors including the created time and

the last accessed time, the system uses below expression

basically.

2)(diffbase TT −

For two files, the system calculates diffT as the

1권 903

difference of the time in second then subtract it from

baseT that is 14400 (3 hours in second), and square

finally. If the difference is smaller than baseT , this

factor goes to zero because we assumed that if the time

difference is big enough, the contribution of the time

factor is definitely small. Similarly, we thought that the

relationship between the time difference and its actual

contribution in the expression is not in linear, so we put

the square in the expression. If the time difference is

small, the contribution may be relatively high in this

expression.

createV = (baseT – CreateTimeDiff)
2

accessV = (baseT – AccessTimeDiff)
2

If CreateTimeDiff is less than baseT , 0
createV = . In

case of AccessTimeDiff < baseT , 0
accessV = .

3-2. Relationship Expression

The factors discussed in previous section have

numeric values but the relationship expression that

describes the portions of the each factor is necessary to

compare the similarity between two files. The system

just uses the summation of each factor with coefficients

as the relationship expression.

(source file, target file)Similarity =

name nameV C× +
path pathV C× +

type typeV C× +
create createV C× +

access accessV C×

In this expression, the coefficient xC

(, , , ,x name path type create access=) should be

decided properly to get good results. To discover proper

coefficients, SA (Simulated Annealing) algorithm

(variation of local search) is used [5]. The details are in

Section 4.3.

4. IMPLEMENTATION

The system consists of three main functions; initial

files and directories indexing, database maintaining, and

retrieving related files. As progress of this study, we

also implemented SA method to calculate the

coefficients in relationship expression.

Basically, each part in the system uses a database that

uses MySQL. The database contains the information of

all document files and directories. Table 1 shows the

schema of the database.

Column Name Type Comment

Index Integer Primary Key

Name Varchar

Path Varchar

Type Varchar

Create Time Timestamp

Access Time Timestamp

Table 1 Database schema of the system

4-1. Initial Indexing

At first, the system collects the information of the

files and directories in the local disks. The indexing

program searches all local disk drives then traverses all

directories recursively as insert files and directories

information in the database. At here, the system just

concerns the document files including image, video,

music, and source code because users spend their times

with these files. Moreover, if there are many files in the

database, the system takes a long time to calculates all

similarities when users retrieves related files.

4-2. Database Maintaining

After initial indexing, the system should maintain the

database up-to-date. The background program captures

the changes in local drives then updates the database.

The system concerns the changes of file name, directory

name, and last accessed time.

4-3. Relationship Expression Constructing

(Simulated Annealing)

Each term in the expression has the difference ranges.

1권 904

Therefore, we added some adjusting multiplications that

are independent to the final solution of the SA. This is

final form of the expression.

(source file, target file)Similarity =

100name nameV S× × + 10path pathV S× × +

100type typeV S× × +
610create createV S÷ × +

610access accessV S÷ ×

For this expression, we designed the SA to find five

unknowns xS .

� Initial Solution (Sname, Spath, Stype, Screate, Saccess):

(3, 3, 3, 3, 3), The absolute value of the solution

has no meaning because the relative values of

each factor decide the similarity. Initially, we

supposed the significances of all factors are same.

� Initial Temperature: 1.0, the system takes a long

time to process, so we set the initial temperature

to 1.0 that is a small value.

� Update Temperature: Multiply 0.95 to the

temperature. According to the initial temperature,

we made the multiplication. At this environment,

the system reaches to the lowest bound of the

temperature at least once in most case.

� For Statement Repetition: 5, same reasoning with

above.

� Perturb Solution: Choose one unknown at random

then add a random number x (-0.5 < x < 0.5)

� Boltzmann Constant: 3, SA may goes to worse

solution based on the Boltzmann constant and the

temperature. When the constant is 3, the solution

goes worse at 20%. Surely, the solution tends to

goes worse at an early stage according to the

temperature.

� Terminate Condition: Time duration in sec, we

put 28800 (8 hours) at main experiments.

� Cost Function: Number of matches, when

compare two solutions, our SA compares the

number of matches between user-chose related

files and computer-chose related files that uses

the relationship expression.

4-4. Retrieving Related Files

If user gives a source file, the program grades all the

files and directories based on the relationship expression.

After that, the program shows a few files in top place.

5. EXPERIMENTS & RESULTS

We built up four databases for five people. For

acquaintances, we asked to participate in the experiment

and they accepted. The participants are male, good hand

at computing and in 22-33. They chose three source file

and ten related files for each source file. Choosing some

files in same directory is permitted and they chose the

source files they like.

For each user, we had the experiments including the 8

hours – terminate condition in SA – solution searching

work. The experiments find final solution, coefficients,

and a number of matches between user-chose related

files and computer-chose relate files among 30 target

files when the expression uses final solution.

Final Solution
Participant

Number of matches

(0.1556, 3.9458, 0.2148, 0.3033, 0.5681)
User 1

12 (40.00%)

(0.5195, 3.1078, 4.1068, 1.9653, 0)
User 2

13 (43.34%)

(0.0195, 1.8966, 0.1678, 1.2202 0.7789)
User 3

4 (13.34%)

(0, 0.5018, 0.2899, 3.9875, 1.2179)
User 4

9 (30.00%)

1권 905

(3.9848, 0, 0.9751, 3.9131, 5.0168)
User 5

2 (6.67%)

Table 2 Experiment results after solution searching (SA).

The solution consists of five values that represent the

coefficient of each term in the relationship expression.

This table also shows the performance in number of

matches for each solution.

There are few participants so we couldn’t establish

one integrated solution. However, we need one

integrated solution or some automatic construction

without experiments because this experiment, searching

final solution, is very bothersome works for users. In

this experiment, users have to choose 33 files including

3 source files and 30 target files. In addition, they have

to do a long time simulated annealing works. It will be

discussed in future works.

5-1. Experiment for the factor contributions

In the previous experiment, the relationship

expression was discovered. However, the coefficient of

the term of path is relatively high and the term of last

accessed time is low. This is an obvious result because

the adjusting multiplication is not accurate. Anyway, we

were anxious about the contribution of the factors.

Therefore, we had additional experiment to verify the

relationship expression.

Coefficients in the

expression
User 1 User 2 Average

(1, 0, 0, 0, 0) 3 6 4.5

(0, 1, 0, 0, 0) 3 11 7

(0, 0, 1, 0, 0) 0 0 0.0

(0, 0, 0, 1, 0) 1 8 4.5

(0, 0, 0, 0, 1) 9 7 8

Average 3.2 6.4 4.8

(1, 1, 1, 1, 1) 10 9 9.5

(1000, 1, 1, 1, 1) 4 6 5

(1, 1000, 1, 1, 1) 12 9 10.5

(1, 1, 1000, 1, 1) 10 10 10

(1, 1, 1, 1000, 1) 4 8 6

(1, 1, 1, 1, 1000) 9 7 8

Average 8.17 8.17 8.17

(1, 1, 1, 1, 0) 7 9 8

(1, 1, 1, 0, 1) 10 8 9

(1, 1, 0, 1, 1) 5 8 6.5

(1, 0, 1, 1, 1) 6 9 7.5

(0, 1, 1, 1, 1) 10 8 9

Average 7.6 8.4 8

Table 3 Results of the experiment for the factor

contribution: The table shows number of matches for

several solutions.

Table 3 shows the results of the experiments.

According to the experiment design, absolute value of

the coefficient is not important but the ratio between the

coefficients as described before. When the expression

just concerns one factor, the average performance is 4.8

in number of matches. However, there is 8.17 when the

expression concerns all factors. It’s larger than the case

of (0, 1, 0, 0, 0) that concerns path term. Therefore, we

can say not only directory factor but also the others

contribute to the results. In addition, user 2 has zero at

last accessed time term in final solution. However, (0, 0,

0, 0, 1) give a proper result, so the term will not have

zero contribution. In addition, (0, 0, 1, 0, 0) gives 0

matches, however, (1, 1, 1, 1, 1) is much better than (1,

1, 0, 1, 1). In conclusion, all factors in the expression

contribute to determine the similarity.

5-2. Experiment for time factor model

The system uses special expression for the time

factors.

Model 1:

If (TimeDiff <
baseT)

Return (baseT – diffT)
2

÷
610 ×S;

Else

1권 906

 Return 0;

However, is this expression really good? To verify

this approach, we made another model that describes the

time factors.

Model 2:

If (TimeDiff ≠ 0)

Return 1 ÷ diffT ×300×S;

Else

 Return 300×S;

For each model, we had the experiments for two

people. Based on two models, the system found the

solution using simulated annealing algorithm then

shows maximum matches.

 User 1 User 2

Model 1 12 13

Model 2 11 12

Table 4 Results of the experiment for the time factor

model in number of matches.

The results show Model 1 is better than Model 2 even

it is a small difference. We couldn’t say Model 1 is best

but our model (Model 1) for the time factors is good

enough to use.

6. CONCLUSION

This study shows simple method to construct the

relationships in the hierarchical file system. The system

that classify based on one attribute is not enough. By

considering multiple factors, we made the relationship

expression that marks similarity between two files.

Through this expression, our system finds the related

files. Users can open the files what they wants through

the relationship expression that combines multiple

attributes of the files. Through the experiments, we

knew that the expression after solution searching gives

acceptable and good results. We think, in real

application, this system can be implemented like recent

files list.

7. FUTURE WORKS

7-1. User Interface

This paper didn’t discuss about the user interface but

it’s very important part. Users tend to avoid executing

additional program. They want to do inside a current

running program. Therefore, our system should be

integrated to the current programs. At first, we can think

a combining with the file explorer. However, users

really find the related files in the file explorer? We

didn’t traced user’s activity but we think users find the

related files when they use word processor, document

viewer, editor, and so on. Therefore, our system should

be integrated into the actual editing and viewing

program not the file manager. Many editing programs

support recent files tab when users try to open a

document. The related files may be displayed in the

same interface with the recent files. Likewise, the

application may have a section of the related files in the

menu.

Figure 1 Proposed design of the user interface in the

menu.

7-2. Environment Adaptive System

Each user has different ways to organize the files.

Therefore, the relationship expression in the system

should be different according to user. As you see in the

experiments, two users have the different coefficients in

the relationship expression. Most simplicity way is a

user-specified expression. Users may modify the

coefficient or expression model by themselves. More

convenient way is re-doing our experiment. Users can

1권 907

search the good coefficients according to our

experiment procedure – simulated annealing method.

However, these ways requires user’s efforts. It’s not our

wish. If possible to analysis the user’s style and

construct the personalized expression automatically, it

will be great.

REFERENCES

[1] Doug Schaffer and Saul Greenberg, “Sifting through

Hierarchical Information”, INTERACT ’93 and

CHI ’93 conference companion on Human factors in

computing systems, p.173-174, April 1993

[2] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon,

James W. O’Toole, Jr, “Semantic File Systems”,

Proceedings of the 13
th

 ACM Symposium on

Operating Systems Principles, p. 16-25, 1991

[3] Gary Marsden and David E. Cairns, “Improving the

Usability of the Hierarchical File System”,

Proceedings of SAICSIT 2003, p. 122-129,

September 2003

[4] Kerry Rodden and Kennth R. Wood, “How Do

People Manage Their Digital Photographs?”, CHI

Letters Volume No. 5, Issue No. 1, April 2003

[5] Stuart Russell and Peter Norvig, “Artificial

Intelligence – A Modern Approach”, 2
nd

 edition, p.

115-116

[6] Deborah Barreau and Bonnie A. Nardi, “Finding and

Reminding”, SIGCHI Bulletin, Volume 27, Number

3, p. 39-43, July 1995

[7] Paul Dourish, W. Keith Edwards, Anthony Lamarca,

John Lamping, Karin Petersen, Michael Salisbury,

Douglas B. Terry, and James Thornton, “Extending

Document Management Systems with User-Specific

Active Properties”, ACM Transactions on

Information Systems, Vol. 18, No.2, p. 140-170,

April 2000

1권 908

