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Uncertainty of Time-Dependent Effects in Concrete Structures
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ABSTRACT

This paper is aimed at proposing the sampling method to reduce variance of statistical
parameters in uncertainty analysis of concrete structures. The proposed method is a modification
of Latin Hypercube sampling method. This uses specially modified tables of random
permutations of rank number. Also, the Spearman coefficient is used to make modified tables.
Numerical analysis is carried out to predict the uncertainty of axial shortening in prestressed
concrete bridge. The numerical results show that the method is efficient for uncertainty analysis
of complex structural system such as prestressed concrete bridges.

1. Introduction

Prestressed concrete bridge has complex structural system because it is constructed in
stepwise, and its structural behavior is time—dependent due to creep and shrinkage of concrete.
In this study a modified method of Latin Hypercube sampling is proposed by which the variance
of statistical parameters of outputs can be reduced more”’. The paper represents a basic
theoretical reasoning sampling scheme. This method uses specially modified tables of random
permutations of rank numbers, which form input samples for a simulation procedure. Finally,
numerical analyses are carried out to show that proposed modification of Latin Hypercube
sampling method can result in a significant decrease of variance in the estimates of commonly

used statistical parameters.

2. Method for uncertainty analysis

The modified LHS method consists of two steps to obtain an NX K design matrix. The first
step is dividing each input variable into AV intervals with equal probability of 1/N. The second
step is the coupling of input variables with modified tables of random permutations of rank
numbers. The general expression of a equation for analytical model is as follows.
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Y=f(X) (1)
where, ¥ = output variable
f(-) = deterministic analytical model
X = the vector of input variables assumed to be
random ones
= [z, 2y ,xn]T
Every input variable z,(k=1,2,,K) is described by its known CDF with the appropriate
statistical parameters. The sample z, of input variables, n=1,2, N (N being the number of
sample equal to the number of simulations) is selected in the following way.
The representative parameter is used just once during the simulation procedure and so
there are N observations on each of the K input variables. N observations on each of input
variable z, are associated with a sequence of integers (rank number of intervals) representing a

random permutation of integers 1,2,-+,N. They are ordered in the table of random permutations
of rank numbers which have N rows and A columns.- The rank numbers of intervals used in the
n—th simulation are represented by the n—th row in the table. It means that this table forms
the strategy for obtaining an input samples.

Tables used in LHS are commonly generated randomly. The possibility does exist that a
certain statistical correlation among columns of the table is randomly introduced, which may
have a significant influence on the results of simulation. It naturally affects the bias and
variance of the estimates obtained. So, it is required that rank permutations are mutually
independent. To diminish the dependence of the input variables, some adjustment are made
to NX K design matrix.

Let R be an NX K matrix whose columns represent K permutations of integers 1, 2, -, N.
That is, matrix R is identical to the table of random permutations of rank numbers used in LHS
schemes. Rank correlation among columns of this matrix is described by the rank correlation
matrix T, where element T; (4,j= 1, 2,--, K) are the Spearman coefficients among columns i
and j of R. It is obvious that matrix T is symmetrical and in the case of uncorrelated column is
equal to unit matrix I. Consider realizations of R for which matrix T is positive definite and let
S be a lower triangular matrix such that

SXTxS" = 1 ‘ (2)
where
s=Q! (3)

Because matrix T is positive definite, the Cholesky factorization scheme can be used to
find the lower triangular matrix Q.

T=QxQqQF (4
The following transformation results in an NX X matrix Rg,
Rs =R xS’ (5)

Statistical correlation among columns of this matrix is described by the rank correlation
matrix Tp. Matrix Tp should be close to I. That is, the difference between appropriate
elements in matrix Tg and matrix I is lower than in the case of matrix T and matrix I. The
values in each column of input matrix R can be now arranged so that they will have the
same ordering as the corresponding column of matrix Rg. As a result, the rank correlation
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matrix T equals Tp and the rank correlation among columns of R and also among columns
of the table of random permutations of rank numbers is reduced.

3. Numerical analysis

Particular attentions have given to the uncertainty problem of creep and shrinkage'®. To
study the effectiveness of proposed method, probabilistic analysis to predict axial
shortening of prestressed concrete box girders are performed and the statistical parameters
of outputs are estimated. Span and cross section geometry of girder for numerical example
are shown in Fig. 1. Estimates are compared for 10, 20 and 30 simulations. Sampling is
repeated 10 sets for each number of simulations. In the case of LHS the tables are
randomly generated in every run. In the case of modified LHS the tables are rearranged
and statistical correlation of their columns is diminished. Intervals have the same probability
1/N and representative parameters are taken at the centroid of intervals.
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(a) Span segment geometry (b) Typical cross section

Fig. 1 Span and cross section geometry

Statistical properties of the axial shortening of prestressed concrete box girder at
10,000days after construction are presented in Fig. 2 and Fig. 3. The results obtained by
modified LHS are plotted as a full line and by LHS as a dashed line in the figures. Each
figure consists of part (a) and part (b). In each figure, part (a) gives 3 plots — (1) mean
value of an appropriate statistical parameter obtained from 10 sets, (2) minimum value of
an appropriate statistical parameter obtained from 10 sets, and (3) maximum value of an
appropriate statistical parameter obtained from 10 sets. On the horizontal axis the numbers
of simulations are plotted. On the vertical axis the value of appropriate parameter Z are
plotted. Statistics of mean values are shown in Fig. 2. Mean value in case of modified LHS
is almost same as that in case of LHS. However, the difference between maximum value
and minimum value in case of modified LHS is much smaller than that in case of LHS.
Also, standard deviation in case of modified LHS is much smaller than that in case of LHS.

Statistics of mean values are shown in Fig. 2. Mean value in case of modified LHS is
almost same as that in case of LHS. However, the difference between maximum value and
minimum value in case of modified LHS is much smaller than that in case of LHS. Also,
standard deviation in case of modified LHS is much smaller than that in case of LHS.

Statistics of standard deviations and statistics of coefficient of variation are shown in Fig.
3. Statistical characteristics of Fig. 3 are similar to those of Fig. 2. Mean value in case of

464 =3



modified LHS is almost same as that in case of LHS. The difference between maximum
value and minimum value in case of modified LHS is much smaller than that in case of
LHS. Standard deviation in case of modified LHS is much smaller than that in case of LHS.
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Fig. 3 Statistics of standard deviations
4. Conclusions

An effective probabilistic analysis method is proposed for uncertainty analysis of concrete
structures. The results of numerical analysis show that the difference between maximum
and minimum value for mean values, standard deviation and coefficient of variation by
proposed method is much smaller than that by conventional LHS method.
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