2006 ¥=SAFEFTHeEUS] =FF Vol. 33, No. 1(B)

4P AFE TE2E AT HE FRdY 4A

Bz 5 oulid, ol4F, vie 28Y, ¥/E
dAdEE FFY Hea
{etaropao, airtight} @yonsei.ac.kr
{srini, hantack } @cs.yonsei.ac.kr

Designing a Generic Compiler for Scalable Computing Fabric

Emanuel Taropao, Won-Jong Lee, Vason P. Srini, Tack-Don Han
Department of Computer Science, Yonsei University

Abstract
A blooming area of processor design is represented by scalable computing fabric. As the structure of the processors developed using scal-
able computing fabric evolved from simple programmable units to processors supporting change of flow instructions and function calls, an
increasing interest is in developing the compiling technology that will allow us to harness not only the full power of their hardware but also
to target multiple architectures. In this paper we present the front-end of a generic compiler, able to accept a various source languages and

transform them in a common intermediate representation.

1. Introduction

Initially designed to replace pin-point functionality, FPGAs evolved
into having an impressive computational density among today’s program-
mable chips. Combining multiple FPGAs into complex designs yields
nowadays a high-performance, cost-effective solution to the computational
challenges raised by the ever increasing size of the datasets to be proc-
essed.

The scalability and performance of FPGA based systems comes from
hamessing the spatial parallelism obtained by implementing a large num-
ber of simple functional units on the same FPGA. Their design is thus
simple, efficient, self-contained and easy to templetize.

As top of the line FPGAs[1] can achieve performance and power effi-
ciency close to the one offered by ASICs while being fully programmable,
an increasing interest is in developing a compiler technology able to target
scalable computing fabric (SCF) [2] resulted from using platform FPGAs.
This compiler needs to be extensible, modular, re-usable and efficient.

Retargetable, optimizing compilers for modern architectures have been
previously analyzed {3], [4] and implemented [5], [6]. Clustered VLIW [7]
and reconfigurable architectures and their associated compilers (8] have
been extensively researched during the past few years. Although these
compilers generate efficient code for their target architectures, they suffer
on the configurability and re-usability sides.

In this paper we describe a generic compiler front-end able to accept a
comprehensive array of high level source languages (Cg, Matlab, HPF)
and to translate them in a common intermediate representation (IR), fit for
high-level optimizations and easily targetable to virtual component librar-
ies. Momentarily in a prototype stage, where basic features of the
compiled languages are supported and restrictions are imposed on typing
rules, the compiler will support the full specification of the source
languages and generate optimized FPGA representations of source
programs. The front-end design is detailed by section 2. Section 3
describes the main structures used by the IR and motivates our choices.
Section 4 contains a sample source program, its transformed representation
in IR and its VCL template. The paper concludes with section 5 where
conclusions are drawn and future directions are presented.

2. Front-end Design

An essential part in the compilation chain, the front-end contains the
array of transformations starting with the lexical analysis of the source
language(s) and ending with the Medium Leve] IR (MIR) generation. Most
of the high-level optimizations are implemented starting from the High
Level IR (HIR) and ending with close to machine specific optimizations
performed over the MIR. These optimizations greatly influence the quality
of the code generated by the machine dependent back-end (or in our case
by the virtual component selector).

As developing language we used Java [9] and as IDE the open source
Eclipse [10]. For generating the lexical analyzer and parser code, we used
ANTLR [11] which accelerated the process of writing the grammars and
their productions for the compiled source languages. A representation of
the compilation chain is given in Figure 1. Our compiling architecture is
represented in Figure 2.

2.1 Lexical Analyzer

The lexical analysis phase was straight forward. We used publicly
available grammars describing the structure of the compiled source lan-
guages. The ANTLR definition of the lexical analyzers, for each of the
compiled source languages simply followed the publicly available gram-
mars, making few integration modifications. The output of the lexical
analysis is a stream of tokens, not including comments and spacing charac-
ters, is fed to the syntax analyzer.

2.2 Syntactical Analyzer

Similarly to the lexical analysis, for the syntax analysis phase we had
to develop multiple analyzers, for each of the compiled source languages.
Using ANTLR we were able to have relatively readable parsers that were
self contained and offered a unitary interface to the constructed abstract
syntax trees (ASTs).

394

2006 F=AFEEFFENE] =F3F Vol 33, No. 1(B)

Lexcal Syntactical Semantic Code Generator
Ea Analyzer :3 Analyzer j Analyzer ::3 j
]
Source Token IR code n{m‘fxe 7y Assamdly’
Langusge Stream H 2 '3y Relocatable
N : 1V ¢ Object Code
L
[A
’ 1 [
tantzer ! M
anenry | o= -
~
fmm———— N
' ~
- - .-
Spitmized IRgEde
L. AT

Figure 1: The compilation chain, broken into main passes.

A crucial role for the parsing efficiency is played by the symbol table
(ST). Organized in multiple levels corresponding with the scope of the
compiled languages, the ST is a unique component used by all compilation
chains. A good equilibrium between space and efficiency is realized using
a hashing structure, where the in-memory address of each node is used as a
hash key. For our single threaded, single memory, compilation model this
worked fine. For a distributed compilation system which may potentially
run on multiple machines the memory address of an object obviously no
longer suffices. A naming scheme including the machine name and the
memory address can then be used. This would trade space (by increasing
the hash key size) for efficiency (keys will remain unique).

The output of the syntax analyzer is represented by an AST. This
represents the structure of the source language at a very high-level, keep-
ing all the information about loops, function calls and array indexing. The
advantage of structuring the source code as an AST is revealed by the next
compilation phases, where by traversals of this tree we realize type infer-
ence and type promotion and high-Jevel optimizations.

2.3 Semantic Analyzer

The AST produced by the syntactical analyzer is used as input for this
compilation phase. The output of this phase is represented by a “deco-
rated” AST, which is an AST containing type information. As different
typing rules apply for each of the compiled languages, we had to build
three different semantic analyzers. The type promoters had a common
structure by deriving from the generic TreeWalker class offered by
ANTLR.

Out of the three languages, MATLAB’s type inference was the most
difficult. For this initial stage of development, we support a subset of
MATLAB’s type promotion mechanism. An example of compiling
MATLAB into an FPGA is given in [12].

For a rapid prototyping stage, we supported first the fundamental types
in all of the three compiled languages. We wrote type inference rules for
the following types: byfe (or character, with restrictions), integer (repre-
sented on 16, 32, 48 and 64 bits), floating point numbers in single and
double precision. All these types are supported both at single variable level
as well as within arrays and assignments to these arrays. Implicit casting
from a type to another one is supported as described by each source lan-
guage typing rules. We do not allow implicit casting for composed types
and inherently, the supported explicit casting is implemented as reinterpret
casting.

2.4 IR Code Generator

The decorated AST produced by the semantic analyzer is then trav-
ersed and transformed in MIR. The unification point of the three compile
chains, the IR code generator outputs three-address statements, €asy 10
map on virtual components.

Figure 2: The compiling architecture.
2.5 Virtual Component Selector

The virtual component selector (VCS) interacts with a virtual compo-
nent library (VCL). Initially, the VCL contains the templates for basic
operations (i.e. templates for adders, multipliers, registers, buses etc). Each
of the components is characterized by various parameters, most important
being the size of the occupied area on the FPGA, the power consumption
and the latency. Being configurable, these parameters help us estimate the
cost of the resulting design in the context of a given technology.

Reading the optimized IR, the VCS queries the VCL for available
components. If none is found, a new component expressing the required
transformation should be created and stored in the VCL.

3. IR Constructs and Optimizations

The IR code generator starts with walking the decorated AST and
transforming it to a linear (or canonic) form. A simple example is illus-
trated in Figure 3 which presents the transformation of a loop node in MIR.

The main abstractions used for MIR are similar to the ones presented
in [5]. We present the most important in Table 1.

Instruction Type MIR
ASSIGN V <- Expression
GOTO <goto: label>

IF conditional_expression THEN <if: cond, label_true_block, fa-

bel false block>

CALL <call; procname, args>
RETURN <return: v7>
SEQUENCE <sequence: MIR instructions>

Table 1: Some of the standard resources / instructions and their translation in
MIR.

As the common MIR is suitable for most optimizations done in com-
pilers, we used it to evaluate the following: dependence analysis and de-
pendence graphs — for various graph algorithms we developed our own
library, tail call optimization, register allocation and assignment.

Using the same MIR for multiple source languages forced us to iden-
tify common traits across them and to construct the IR following them. We
combined array indexing and referencing, calling conventions (with the
typing subset imposed to MATLAB and inlining Cg procedures), loop
expressions (with subsets for loops expression in HPF) and expression
evaluation (again, taking into account the typing subset imposed to
MATLAB). One of the most important gains we had using the generic
MIR design is that supporting another source language is fairly trivial, by

395

2006 ¥=AFEFTEEUSE =FF Vol 33, No. 1(B)

L
if }(i < 10) goto _L2
sequence |

o o a <- Eval(a +1)
b <-Eval(a * i)
Ole
]

L2

Figure 3: Compiling a WHILE loop in MIR. “Eval” stands for the expansion of its
argument of type expression in MIR. (e.g. Eval (i + 1) & tempvar_n <-i+ 1, where
tempvar_n is a generated temporary comesponding to “i+1” ’s parent node in the
decorated AST)

implementing only the first three links of our compiling chain: the lexer,
the parser and the type promoter.

Some of the optimizations we are currently implementing include:
static single assignment, strength reduction, loop unrolling and loop fu-
sion. We target these optimizations for their high impact on the quality of
the generated design.

4. Examples of Transformations

Out of the whole array of transformations applied to the source lan-
guage, we selected a few illustrating the critical parts of the compile chain:
type inference, MIR generation and virtual component selection.

Let’s consider the following simple source program:

intl6 i=0; float a = 0.0; double b =1.0;
while (i <10) {

i+=1;

a+=i;

b=a*ij;

Its transformed representation in MIR is illustrated by Figure 3. Trivi-
ally, type inference applied for the AST inner nodes corresponding to the
operators of the source statements implicitly casts the induction variable
from int16 to single and double precision floating point number. The en-
compassing type is then promoted to the respective operators nodes (‘+’
has float type and ‘*’ has double).

The MIR code is then fed to the VCS which interacts with VCL. Let’s
assume we already have pre-generated in the VCL the template for adders
and multipliers. The resulting virtual component template is given below:

IntRegister{16} R0;

FloatRegister[32] R1;

FloatRegister[64] R2;

Adder(Float [R1], Int[R0], Float [R1});
Multiplier(Float [R1], Int [R0], Double[R3});

5. Conclusions and Future Work

We have presented a compiling architecture accepting various high
level source languages and targeting a virtual component library. Having a
modular design, the compilation chain is easily modifiable and high level
optimizations are easy to implement and apply to the IR code. The effect
of these optimizations is directly reflected by the efficiency of the gener-

ated components and final design, implementing in FPGA the initial high
level program.

The current status of the implementation is only an initial one, as only
subsets of the source languages are supported (especially for MATLAB’s
type inference and promotion mechanism) and as the VCS and VCL chain
doesn’t yet support combining complex operations into composed compo-
nents synthesized from the initial basic blocks.

The completion of the VCL and VCS chain along with the generation
of complex designs and their implementation in FPGA are our next goals.

Acknowledgments

The authors whish to thank the Advanced Compiler Design class
(spring 2005) students from Yonsei University, for their industriousness
and diligence in tackling the most delicate problems in designing subparts
of the generic compiler. Special thanks go to Yi Jacheon, Kang Jun-Seok,
Tom Yum.

REFERENCES

1] Virtex I and Virtex 11 Pro Platform FPGAs -
http://www.xilinx.com/bvdocs/publications/ds083.pdf

2] Dataflux Systems Inc, Berkeley
http://www.datafluxsystems.com/index.php?content=technology/scf

[3] A.V. Aho, R. Sethi, .D. Ullman, S. Guthe, T. Ertl - Compil-
ers: Principles, Techniques and Tools,Addison-Wesley, 2™
edition, 1986

[4] Steven S. Muchnick — Advanced Compiler Design Implementation,
Morgan Kauffman, 1997

[5] Z.Bozkus, AN. Choudhary, G. Fox, T. Haupt, S. Ranka — Fortran
90D/{HPF} compiler for distributed memory {MIMD} computers:
design, implementation, and performance result,

Supercomputing, 1993, pp. 351 - 360

61 W. Mark and 8. Glanville and K. Akeley — CG: A system for pro-
gramming graphics hardware in a C-like language, ACM Transactions
on Graphics, August 2003

[7] A. Therechko, M. Garg, H. Corporaal: Evaluation of Speed and Area
of Clustered VLIW Processors, 18™ International Conference on VLS
Design, pp. 557 — 563, 2005.

[8] Y. Qian, S. Carr, P. Sweany - Optimizing loop performance for clus-
tered VLIW architectures, Proceedings of the 2002 International Con-
ference on Parallel Architectures and Compilation Techniques,
pp. 271 - 280, 2002

9] Sun — The Java Programming Language Reference
http://java.sun.com/j2se/1.4.2/docs/api/index.html

[10] Eclipse — An Open Source IDE
http://www.eclipse.org

[11] ANTLR - Parser Generator
http://www.antlr.org

[12] Xilinx - Xilinx System Generator Users Guide
Version 8.1
http://www.xilinx.com/products/software/sysgen/app_docs/user_guide.
htm, Chapter 3, Section 8.

396

