B86 # 싸주아리쑥 (*Artemisia herba*) 지상부로부터 분리한 Cycloartane-Type Triterpenes 경희대학교 생명공학원 및 식물대사연구센터, ¹대구한의대학교 한방바이오식품학과, ²강화군농업기술센터 특화작목연구소, ³한국생명공학연구원 지질대사연구실, ⁴경희대학교 약학대학 약품생화학교실, ⁵경북대학교 식품영양학과 유종수, 안은미¹, 방면호², 정해곤², 정태숙³, 이경태⁴, 최명숙⁵, <u>백남인</u>* ## Cycloartane-Type Triterpenes from the Aerial Parts of Artemisia herba Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University, Suwon 446-701, Korea, ¹Department of Oriental Medicine Biofood Science, Daegu Haany University, Gyeongsan 712-715, Korea, ²Ganghwa Agricultural R&D Center, Incheon 417-830, Korea, ³National Research Laboratory of Lipid Metabolism & Atherosclerosis, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333, Korea, ⁴Department of Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea, ⁵Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea Jong Su Yoo, Eun Mi Ahn¹, Myun Ho Bang², Hae Gon Chung³, Tae Sook Jeong⁴, Kyung Tae Lee⁵, Myung Sook Choi⁶ and Nam In Baek #### 실험목적 Artemisia species were distributed above 200 kinds in the world, especially about 38 kinds in Korea, but some species were unidentified. Knowledge of these unidentified plants is very important because there is not only the potential to discover new alternatives for the treatments illnesses, but also the conservation of plants. This species has been used traditionally medicines, among them, the aerial parts of Artemisia asiatica (Compositae) has been used for stopping several kinds of bleedings, regulating menses and curing menstrual disorders as well as in alleviating pain. The chemical constituents of genus Artemisia have been studied by a number of researchers. For example, terpenes, flavonoids, lignans, phenylpropanoids etc. 'Sajuarisuk' (Artemisia herba) is an annual herb which is a kind of Artemisia asiatica with 'Sajabalsuk' growing wild in Ganghwa, Korea. The constituents of 'Sajuarisuk' have been reported by Ryu, that is only flavonoid such as eupatilin, jaceosidin. So, in this poster the authors reported the isolation and identification of two cycloartane-type triterpenes from the aerial parts of 'Sajuarisuk'. ### 재료 및 방법 o 실험재료(Materials) The aerial parts of 'Sajuarisuk' (*Artemisia herba*), which have been harvested at Ganghwa in 2002 and 2003, were offered from Ganghwa Agricultural R&D Center (Incheon). The 'Sajuarisuk' stored for 2 and 3 years in the air was used in the experiments. o 실험방법(Methods) The dried aerial parts of 'Sajuarisuk' (Artemisia herba, 8 kg) were extracted Corresponding author : 백남인 E-mail : nibaik@khu.ac.kr Tel : 031-201-2661 two times at room temperature with 80% aqueous MeOH (40 L×2). The extracts were partitioned with water (3 L), EtOAc (3 L×2) and n-BuOH (3 L×2), successively. The EtOAc extract (SAE, 102 g) was applied to the silica gel (70-230 mesh) column (8×25 cm) chromatography (c.c.), and eluted with n-hexane – EtOAc (7:1 \rightarrow 5:1 \rightarrow 1:1, each 5 L) and CHCl₃ – MeOH (10:1 \rightarrow 1:1, each 2 L). It was monitored by thin layer chromatography (TLC) to produce 19 fractions (SAE1 to SAE19). Phytochemical investigation of these fractions resulted in the isolation and identification of two cycloartane-type triterpenes from EtOAc fraction. Their structures were established by chemical and spectroscopic methods (EI-MS, ¹H NMR, ¹³C NMR, DEPT, COSY, HMQC and HMBC). #### 결과 및 고찰 The aerial parts of 'Sajuarisuk' (*Artemisia herba*) were extracted with 80% *aq ueous* MeOH, and the concentrated extract was partitioned with EtOAc, *n*-BuOH and H₂O. From the EtOAc fraction, two cycloartane-type triterpenes were isolated through the repeated silica gel and ODS column chromatographies. From the result of physico-chemical data including NMR and MS, the chemical structures of the compounds we re determined as 1H,19H-cyclopropa[9,10]cyclopenta[a]phenanthrene,9,19-cyclocholan-24-al and 1H,19H-cyclopropa[9,10]cyclopenta[a]phenanthrene,9,19-cyclocholan-24-oic acid. 1H,19H-cyclopropa[9,10]cyclopenta[a]phenanthrene,9,19-cyclocholan-24-al 1H,19H-cyclopropa[9,10]cyclopenta[a]phenanthrene,9,19-cyclocholan-24-oic acid