Environmental isotope studies on the origin and transformation of nitrate and sulfate in alluvial groundwater

<u>최병영</u> · 윤성택 · 권장순 · 김경호

고려대학교 지구환경과학과 및 천부지권환경연구실(styun@korea.ac.kr)

The sources and transformation of nitrate and sulfate and their effects on groundwater quality were studied using environmental isotopes ($\delta^{15}N$ and $\delta^{18}O$ of nitrate, and $\delta^{34}S$ of sulfate) for groundwater samples from a largely two-layered alluvial aquifer. Each layer has the different groundwater recharge sources and redox condition with depth. The $\delta^{15}N_{nitrate}$ and δ¹⁸O_{nitrate} values clearly show that the sources of nitrate in oxic groundwater at near surface are the mixture of ammonia or urea-containing fertilizer and manure. In addition, the decrease of nitrate concentrations with depth is caused by denitrification. The estimated enrichment factor for $\delta^{15}N_{\text{nitrate}}$ is -5.8%. About 40-50% of nitrate is attenuated by denitrification. In oxic groundwater, $\delta^{34}S_{\text{sulfate}}$ values range from -14.4 to 2.4%, which indicate that sulfate may be originated from pyrite oxidation, fertilizers and soil S. However, a simple mass calculation for sulfate indicates that pyrite oxidation by denitrificaton considerably generates sulfate in oxic groundwater, leading to a decrease in nitrate concentration. This illustrates that the recharge of nitrate-contaminated water may cause a secondary water quality problem such as increased sulfate and hydrogen ions. On the other hand, in sub-oxic groundwater the increased δ³⁴S_{sulfate} values (up to 64.1%) evidently indicate that sulfate is removed by microbial-mediated sulfate reduction.