
Fault Tolerant Display Image Data Manipulation Unit for SOP

Jaehee You, Hyungoo Lee
School of Electrical Eng., Hongik Univ., Seoul, Korea

Tel: +822-320-1657; E-mail: jaeheeu@hongik.ac.kr.

Abstract
A display panel image data manipulator for SOP or
SOG is presented. It is capable of all the shift
operations for MPEG decoders, graphic processors
and controllers as well as data pack, merging, bit
split and reformation operations to improve speed
and memory utilization. To alleviate poly-Si low yield,
redundancy based fault recovery scheme is
introduced utilizing regular structure.

1. Introduction
Mobile and portable devices such as mobile

handset, PDA, PMP, portable DVD, mobile PC and
visual MP3 have display panels with tight constraints
on size, power, thickness, cost, weight and high
reliability. This leads to system on panel (SOP) and
system on glass (SOG) integration as one of
promising technical directions next to system in
package (SIP). LTPS is known to be a suitable
processing technology candidate for SOP. However, it
has inherent drawbacks such as large channel length,
low mobility, large leakage current, kink effect
problems, and the lack of uniformity on threshold and
mobility. So far, SOP cases such as charge pump,
scan driver and analog data driver in Sanyo and Sony,
scan driver and digital data driver in Philips, scan
driver and digital data driver in Toshiba, 6 bit digital
data driver in LG, and DC-DC converter in NEC,
have been reported for past years. This year, 9 bit
DAC [1] and LTPS panel sized column driver [2] are
integrated in display panels. [3] shows a complete
SOP on glass substrate including a simple Z-80 like
processor and a timing controller. In the future, frame
memories, a graphic controller, interfaces and an
image processor or engines for MPEG are expected to
be realized with SOP.

This paper describes a fault tolerant SOP image data
manipulation unit architecture and implementation
issues for mobile display panel systems. It can process

all the conventional shift operations and data pack,
merging, bit split and reformation operations for
SIMD (Single Instruction Multiple data) image
computing with low hardware overhead. So far, these
are computed with software as in ARM by several
ALU and shifter operations or multimedia processors
such as VIS in SUN UltraSparc [4], MMX in Intel,
AltiVec in Motorola, which are not suitable for SOP
due to tremendously high hardware complexity
regardless of 5X computing gain. However, the
proposed manipulator can improve computation speed
more with less hardware for bit split arithmetic and
save memory space for image data with bit widths not
aligned with the word-length of arithmetic unit such
as 24 bit pixels. In addition, it can reduce pixel data
transfer rate between a frame memory and a data
driver, which causes one of major power sources in
mobile display system. In addition, to overcome
inherent low yield problem of TFT device technology,
the proposed architecture is designed to have the
regular structure of barrel shifter with newly
developed redundancy methodologies mainly
composed of interconnections having relatively high
yield compared to TFT devices.

2. Instructions, Architecture and Operations
To enhance computation speed with low hardware

complexity, SIMD is required since image processing
is basically composed of identical operations on many
pixels. This requires data manipulations to overcome
the difference in data width between arithmetic unit
and pixels with multiple precisions. To efficiently
process the above, the following instructions are
proposed and implemented. They are PACK4B
(PACK4HW): packing four bytes (half word) from
four words with 32 bits/word at a fixed position to
generate a word (two words), PUSH24P: packing
four 24 bit data from four words at a fixed position to
generate three words, POP24P: the reverse operation
of PUSH24P and finally PACK64: shifting a 64 bit

P-155 / J. You

IMID/IDMC '06 DIGEST • 1275

data with arbitrary distances and extracting a 32 bit
data. The applications of the proposed instructions are
as follows. PACK4B (PCK4HW) facilitates 8 (16) bit
pixels storage into a frame buffer to save memory
space and display controller read from the frame
buffer. PUSH24P and POP24P also save frame buffer
space and ease the display controller pixel fetch
especially for 24 bit pixel precision. As shown in Fig.
1, each of four 32 bit words contains 24 bit pixels
right justified with 8 bit waste leading to 25% waste
of total memory space. PUSH24P assembles most
significant bytes of four words and places them in a
word and the remaining four 16 bits of pixels are
packed with two 16 bits in a word style, which gets
rid of memory waste completely and achieves 100%
frame or line memory utilization for SOP. The
manipulator can again reformat the data back to four
24 bit pixels to be sent to display panel through
display controller by POP24P.

In addition, the conventional data manipulation
instructions are supported in the proposed data
manipulator.

They are additional pack instructions, such as
extracting four bytes at a fixed position of 64 bit data
to generate a 32 bit word (FPACK16), taking a byte
from a 32 bit word and 24 bits from another word to
generate a 32 bit word (FPACK32), extracting 16 bits
from two 32 bit word to generate a 32 bit word
(FPACKFIX), taking a byte pixel and expanding to
higher precision pixels into a double word
(EXPAND) and merging two words into a double
word (MERGE) to process the pixels with SIMD as
well as bit split addition and multiplication. All the
above instructions are implemented in proposed data
manipulator with little overhead added to a
conventional barrel shifter.

Fig. 2 shows proposed data manipulator
architecture capable of processing 64 bit data. It
consists of barrel shifters capable of 20 to 24 shift
stages and a 25 shift stage for conventional shifts as
well as the proposed data manipulation commands. It
can align the pixel with all bit widths in a word or
double word format as well as put pixels in arbitrary
bit position for comparison, partitioned addition and
multiplication arithmetic with 100% utilization. Some
of the required data manipulation paths conflict with
conventional barrel shifter paths, which require
additional shifts with fixed distances. Although it has
a few additional interconnections for the data
manipulations, the paths are designed not to degrade
the regularity in a barrel shifter to facilitate
redundancy replacements for fault tolerance. This can
be done with MUXes and additional interconnections,
which does not degrade the SOP yield greatly.

xx 8 16

xx 8 16

xx 8 16

xx 8 16

8 8 8 8

16 16

16 16

31 0

31 0

31 0

31 0

31 0

31 0

31 0

Fig.1. PUSH24P and POP24P operations.

Fig. 2. Data manipulator architecture. Fig. 3. Extra interconnection paths.

1276 • IMID/IDMC '06 DIGEST

P-155 / J. You

Extra shift path 32 for FPACK16, FPACK32, 42 for
FPACK16, FPACKFIX and 32 + 42 for FPACK16
are designed. In Fig. 3, the additional interconnections
for the extra fixed shifts paths between 42 and 52
shift stage are shown. (1), (4), (5) are for FPACK16,
(2), (5) are for FPACK32 and (3), (4) are used for
FPACKFIX. For example, FPACK32 uses four (2),
(5) paths to shift 8 bit distance for the corresponding
four fixed 23 shifts required.

The yield of poly Si devices is lower compared to
conventional CMOS. To cope with this major
obstacle for SOP, efficient redundancies are included
in each shift stage with short paths without significant
additional delay with regularity. The each shift stage
shown in Fig. 1 is composed of 4 cross point switch
blocks and each block has an additional switch array
block, which can be efficiently shared since they are
identical switch array. Fig. 4 shows fault tolerant
cross point shifter for only 20 shift stage.

First block (RLS) processes conventional arithmetic
and logic shifts. 2), 3), 4) in RLS are the crosspoint
lines for right shift, bypass without the shift and left
shift, respectively. Second block (IPR) reroutes RLS
input paths (IN[31:0]) with 1). In case of four 8 bit or
two 16 bit block shift, the data at the border of the
blocks need not to be fed into neighbor blocks. For
example, conventional 16 bit 02 left shift routes IN[7]
to O[8] across the border. 1) shifts and routes the data
with 8 bit block-based style and the data at the border

of the blocks are cut out. Third block (ALS_IN)
generates 0 or MSB for 32, 16 and 8 bit partitioned
shifts. Fourth block (BSO_C) reroutes 0 or MSB from
ALS_IN to appropriate output ports. The above four
blocks have redundancy blocks (redundancy ALS_IN,
redundancy BSO_C in Fig. 4) to overcome faults
inside each block as shown in Fig. 4 for low yield
SOP process realization. ALS_IN and BSO_C as well
as IPR and RLS (i.e. 1) in IPR and 2), 3), 4) in RLS)
are functionally connected so if faults occurred in any
of cross point switches, the faults are replaced with
redundancy ALS_IN and redundancy BSO_C below.
For example, if the cross point through 4) in RLS has
faults at the intersection of O[29] and M[28], all of 2),
3), 4) are replaced with the redundancy cross point
lines at RLS (shaded area). Since, the inputs into RLS
should be rerouted, the cross points through 1) in IPR
are replaced with the redundancies (shaded area at
four grids below). In detail, faulty IN[28] � M[28] �
O[29] path is replaced with IN[28] � M[24] (i.e.
RM[28]) � O[29]. Therefore, overall path is
IN[31:0] � {M[27:0] (i.e. RM[31:4]) : RM[3:0]} �
O[31:0]. M[27:0] are shared with RM[31:4] and only
the addition of RM[3:0] can completely recover the
faults in IPR and RLS. Extra interconnections and
MUXes added to the conventional barrel shifter are
376 and 300 (2:1 Mux), respectively. Fig. 5 shows the
experimental data manipulator FPGA layout for
functional verification purpose. The cross points
implemented with full custom layout can further
reduce the chip area of the redundancy overhead.

The image data flow is as follows: Image raw data �
DMU �� Repeated (Frame buffer � Graphic
operations � Frame buffer) �� DMU (only for 24
bit pixels) � Graphic controller & Line memory �
Display Panel.

Fig. 4. Fault tolerance scheme for 20 shift stage.

M[31]
M[30]
M[29]
M[28]

M[27](RM[31])

RM[3:0]: Redundancy Switches for IPR and RLS

M[26](RM[30])
M[25](RM[29])
M[24](RM[28])

M[2](RM[6])
M[1](RM[5])
M[0](RM[4])

RM[2]
RM[1]
RM[0]

Redundancy
S/ W LineRedundancy

S/ W Line

IPR RLS

Redundancy
ALS_IN

ALS_IN

1)
3)

4)

BSO_C

Redundancy
BSO_C

2)

RM[3]

Fig. 5. Data manipulator FPGA implementation.

P-155 / J. You

IMID/IDMC '06 DIGEST • 1277

3. Performance and Advantages
The proposed data manipulator has many application

areas in SOP as well as in conventional display
systems. It can be used as a separate or embedded unit
inside SIMD style double 32 bit MPEG decoding
engine, and graphic processing unit or controller in
SOP. All the data are tightly packed with the
manipulator then they can be processed with bit
partitioned image processing unit, transferred by
reduced data rate through buses and stored in frame
memory, which enhances memory and bus utilizations
with low power in case image processing unit, frame
memory and DMU are implemented with SOP.

36.16

325.5

54.25

325.5

0
50

100
150
200
250
300
350

8BIT 16BIT

(a) Frames/sec. comparisons

2.452.45
4.91 4.91

9.83
7.86

0
2
4
6
8

10

8BIT 16BIT 24BIT
ARMDMU

(b) Memory amount for 8, 16, 24 bit pixels
Fig. 6. Performance comparisons.

The proposed manipulator can be extended to
process the shuffling commonly used in FFT or DCT
and the edge handling for a frame boundary
processing. Combined with customized load and store
of embedded frame memory, image processing
capability is greatly enhanced with little hardware.

Assuming that byte or a half-word, 24 bit pixels are
stored in a 32 bit frame buffer and fetched by a
display controller, the performance of the proposed

data manipulation unit (by PACK4HW or PACK4B)
is evaluated and compared with that of ARM alone
(by software). The time for the process: 8, 16 bit pixel
fetch from the memory – packing – frame buffer write
– display controller - display panel is as shown in (1).

Ttotal = Tdmu + Tmemory + Tlcd (1)
Ttoal: Total time
Tdmu: Time for pixel packing
Tmemory: Time for frame buffer pixel fetch and write
Tlcd: Time for display controller

Since Tmemory and Tlcd are the same for both ARM
and the proposed data manipulator, only Tdmu is
evaluated and compared as shown in Fig. 6. 8, 16 bit
pixel processing performances are increased 6 and 9
times respectively, which alleviates the drawback of
low speed SOP process with low hardware overhead.
As shown in Fig. 6(b), 25% memory saving can be
obtained for 24 bit pixel case with the proposed
PUSH24P and POP24P. Furthermore, the proposed
DMU has a hardware-efficient redundancy scheme
based on regular cross point structure for fault
tolerance, which are mainly composed of
interconnections having higher SOP process yield.

4. Acknowledgements
This research was supported by a grant (F0004110)
from the Information Display R&D Center, one of the
21st Century Frontier R&D Program funded by the
Ministry of Commerce, Industry and Energy of the
Korean Government.

5. Reference
[1] I. Knausz et. al., A 250uW 0.042mm2 2MS/s 9b

DAC for Liquid Crystal Display Drivers, pp. 172-
173, ISSCC (2006).

[2] O. Ishibashi et. al., Amorphous Si SOG 15inch
XGA 20MHz LTPS CMOS TFT Panel sized
column driver, pp. 176-177, ISSCC (2006).

[3] T. Matsuo et. al., CG Silicon Technology and
Development direction on System on Panel, pp.
856-859, SID (2004).

[4] Z. Mou et. al., VIS-based native video processing
on UltraSPARC, Int. Conf. on Image Processing,
Vol. 1, pp. 16-19, (Sep. 1996).

1278 • IMID/IDMC '06 DIGEST

P-155 / J. You

	Main
	Return

