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Bayesian One-Sided Testing for the Ratio of Poisson Means

Sang Gil Kangl, Dal Ho Kim®, Woo Dong Lee’

Abstract

When X and Y have independent Poisson distributions, we develop a Bayesian
one-sided testing procedures for the ratio of two Poisson means. We propose the objective
Bayesian one-sided testing procedures for the ratio of two Poisson means based on the

fractional Bayes factor and the intrinsic Bayes factor. Some real examples are provided.

Keywords : Fractional Bayes Factor; Intrinsic Bayes Factor; Ratio of Poisson Means;
Reference Prior, One-Sided Testing.

1. INTRODUCTION

The Poisson distribution is applied to model many processes in a broad variety of field
such as biology, ecology, epidemiology, medicine, industrial quality control and agriculture. The
comparison of Poisson means from two independent samples is of great interest. For instance
in the comparison of incidence of breast cancer study two groups of women were comparec. to
determine whether those who had been examined using X-ray fluoroscopy during treatment for
tuberculosis has a higher rate of breast cancer than those who had not been examined using
X-ray fluoroscopy (Graham, et. al. 2003; Ng and Tang, 2005).

The present paper focuses on Bayesian testing procedure for the ratio of two Poisson
means. In Bayesian testing problem, the Bayes factor under proper priors or informative priors
have been very successful. However, limited information and time constraints often require the
use of noninformative priors. Since noninformative priors such as Jeffreys’ priors or reference
priors (Berger and Bernardo, 1989, 1992) are typically improper so that such priors are only
defined up to arbitrary constants which affects the values of Bayes factors. Spiegalhalter and
Smith (1982), O’Hagan (1995) and Berger and Pericchi (1996) have made efforts to
compensate for that arbitrariness.

Spiegalhalter and Smith (1982) used the device of imaginary training samples in the
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context of linear model comparisons to choose the arbitrary constants. But the choice of
imaginary training sample depends on the models under comparison, and so, there is no
guarantee that the Bayes factor of Spiegalhalter and Smith (1982) is coherent for multiple
model comparisons. Berger and Pericchi (1996) introduced the intrinsic Bayes factor using a
data-splitting idea, which would eliminate the arbitrariness of improper priors. O’Hagan (1995)
proposed the fractional Bayes factor. For removing the arbitrariness he used to a portion of the
likelihood with a so-called the fraction 5. These approaches have shown to be quite useful in
many statistical areas.

For the comparison for two Poisson means, the most common method of testing the
difference between two means is the conditional method that was first proposed by
Przyborowski and Wilenski (1940). The conditional distribution follows binomial distribution
whose success probability is a function of the ratio of two means. Therefore hypothesis testing
and interval estimation procedures can be readily developed from the exact methods for making
inferences about the binomial success probability. In particular, Chapman (1952) proposed a
confidence interval for the ratio of two means which is deduced from the exact confidence
interval for the binomial success probability due to Clopper and Pearsons (1934). Since then
some papers have addressed these inferential procedures based on the conditional distribution
(Gail, 1974; Shive and Bain, 1982; Nelson, 1991). Schwertman and Martinez (1994) give
several binomial-normal based approximate methods for constructing confidence interval for
difference of two means.

Although the conditional test is exact and simple to use, in the two-sampling binomial
case such a conditional test is known to be less powerful than some unconditional tests. For
example, see Suissa and Schuster (1985) and Storer and Kim (1990). So Krishnamoorthy and
Thomson (2004) proposed an unconditional test for testing about the difference of two Poisson
means. In numerical studies, they showed that the unconditional test is very satisfactory in
terms of sample size, and is more powerful than the conditional test due to Przyborowski and
Wilenski (1940).

Almost all the work mentioned above is the analysis based on the frequentist point of
view, there is a little work on this problem from the viewpoint of the objective Bayesian
framework. So we feel a strong necessity to develop objective Bayesian testing procedure for
the ratio of two Poisson means. For dealing this problem, we use the fractional Bayes factor
(O’Hagan, 1995) and the intrinsic Bayes factor (Berger and Pericchi, 1996).

The outline of the remaining sections is as follows. In Section 2, we introduce the
Bayesian model selection based on the Bayes factor. In Section 3, using the reference priors,

we provide the Bayesian testing procedure based on the fractional Bayes factor and intrinsic
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Bayes factor for the testing of ratio of the two Poisson means. In Section 4, some real

examples are given.
2. BAYESIAN MODEL SELECTION METHODS

Models (or Hypotheses) M,, M,,---, M, are under consideration, with the data =x
=(xy,%y, =+ ,%,) having probability density function f(x| #) wunder model /1,
i=1,2,-,q. The parameter vectors @, are unknown. Let =, ( ;) be the prior distribution of
model M, and let p; be the prior probabilities of model M, i=1,2,,q. Then the posterior
probability that the model A; is true is

-1

P(M, | x)=( 2 -B,-Z) , )
where B is the Bayes factor of model A, to model M, defined by

B.— fff(’” 097 6)d 0;  y( x)
" J x| 8)xl 8)d g, m{xn)’

@

The B interpreted as the comparative support of the data for the model ; to 7. The
computation of B ; needs specification of the prior distribution 7z,( 4,) and x4 6). Usuelly,
one can use the noninformative prior, often improper, such as uniform prior, Jeffreys prior,

reference prior or probability matching prior. Denote it as x). The use of improper priors

7Y(+) in (2) causes the B to contain unspecified constants.
2.1 The Intrinsic Bayes Factor Approach

One solution to this indeterminacy problem is to use part of the data as a training sample.
Let x(J) denote the part of the data to be so used and let x(— /) be the remainder of the
data, such that

0<mM(x( D)< o, i=1,,q. 3)

In view of (3), the posteriors 7(8; | x( )) are well defined. Now, consider the Bayes
factor, B,{ /), for the rest of the data x(— /), using 7~(4; | x()) as the priors:
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JL A= 016, 2 D)2, | 2 D)t

Bi()= =B7i'B]¥,»( (D) 4
J (= D1 6, (D), | 2 D)db, ’ ®
where
N, N,
_ Ny P (X) N _ mi (x())
Bj,-—Bj,-(x)— m]lv(x) and B,,(x( l))— mﬁv(x( l))

are the Bayes factors that would be obtained for the full data x and training samples x(J),
respectively. The Bayes factor (4) depends on the specific training sample x(/). To avoid the
difficulty of choosing x(/), Berger and Perrich (1996) proposed the use of a minimal training
sample to compute the Bayes factor (4). Then, an average over all the possible minimal
training samples contained in the sample is computed. This gives the Arithmetic Intrinsic Bayes
factor (AIBF) of M; to M; as

BY=BY -+ 5 BYx( ). ®

where L is the number of minimal training samples «x(/) contained in x. Also Berger and
Pericchi (1998) gives the median intrinsic Bayes factor (MIBF) of M; to M; as

B¥ = BY.- MELBY(x( )], 6)

where ME indicates the median, here to be taken over Bayes factor with respect to all the
training samples. The MIBF is the most robust and widely applicable intrinsic Bayes factor.
We can also calculate the posterior probability of A, using (1), where Bj is replaced by

B4' and B from (5) and (6).
2.2 The Fractional Bayes Factor Approach

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to that behind
the intrinsic Bayes factor but, instead of using part of the data to turn noninformative priors
into proper priors, it uses a fraction, &, of each likelihood function, L( 8)=/{ x| 6 ), with
the remaining 1—5 fraction of the likelihood used for model discrimination. Then the
fractional Bayes factor of model M; versus model M; is

N,
. SR edCede
Bj=B;i - [ Y =B - I,
ff’(xl 0]‘)71']'( 0])(1 0;‘
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and f{ x| 6,) is the likelihood function, & specifies a fraction of the likelihood which is to
be used as a prior density, and F%= m?(x)/m’(x) is the correction term. Among the choice
of fraction p in O’Hagan (1995), we use b= m/n, where m is the size of the minimal

training sample size, because of the appealing arguments in its favor given by Berger and
Mortera (1995) and Kass and Wasserman (1995).

3. Bayesian Test Procedures

Let X be a Poisson distribution with probability mass function

_ Xt
f(xI/l) - 1 H x—O,l,Z,"' (7)

X

where A>0 is the mean parameter. Suppose that X,,--,X, and Y, -, Y, denote

independent random samples from Poisson distributions with the mean A and the mean 4,
respectively. Then the joint probability mass function of X;,---, X, and Y-, Y, is

mx+ny 3y
A 7

exp(— 14— ny7d)

]i[ X,‘! ﬁ y,»l

=1 1

Az, ¥y A,p=

where A>0 and 7)(0. The parameter 7 is the ratio of two Poisson means. Kang, Lee and
Kim (2002) derived the reference prior (Berger and Bernardo, 1989, 1992) for 7 as follows:

1.1 1
A, =09 22 *(n+nyp °.

Also they showed that the propriety of posteriors for a general class of priors which
include the reference prior and Jeffreys’ prior, and the reference prior meet very well the target
coverage probabilities. Note that the marginal posterior distribution of 7 under reference prior
and Jeffreys” prior is the same, but in our Bayesian hypothesis testing problem, the results
based on reference prior and Jeffreys’ prior are different because of the constant in
computation of the marginal density.

We want to test the hypotheses Hy:y<p, vs. Hy 7> p,. Our interest is to develop a
Bayesian one-sided test based on the fractional and intrinsic Bayes factors for H, vs. H,

under the reference priors.
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3.1 Bayesian Test Procedure based on the Fractional Bayes Factor

Under the hypothesis H,, the reference prior for A and 7 is

44 E
mA,p=7n “A (n+ Ny )] S PEAN

and under H,, the reference prior for A and 7 is

-4, -4
m(d =79 A& “(m+nn) "Ly,
where 1., is the indicator function. Then the elements of Bj in fractional Bayes factors are

given by

mi(x,y) = ﬁfowL(v,/Il x, v)m (5, AdAdy

Nnx+ny+0.5) [ .5 15—
= e j;v "o+ mgn) " dy
ljlx,»! ljly,-!

_ Imx+nyy+0.5) S 2 9)

ﬂ x! ﬁ v
=1 1

and

mie, ) = [ [ Lm0 2 vmtn Dy

X+ myy+0.5) [ a3 "oy
_ Nnx nzr_lv 5) 2" g+ mym) 0y,

o

= o So( %, ¥),

where

npy+1 nzz"O.Sd

51 (x,9)= f 2" g mgn) " dpand Sy( x, y) = f 7 (ny+ nym) 7.
0 o

Since the training sample for hypotheses FH,; and F, consists of two independent and
identically distributed random variables, it seems natural in the fractional setting to formulate

the correction term F?, with the fractions 1/, and 1/n, of each likelihood. Thus the element

of correction term FY, gives as follows.
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T oo 1 1
my(x, y) = fo fo L™Q )L " (g, A1 vy (9, DdAdy

Imx+nyy+0.5 "o _G+3 _
- 1 2y ) f 77y 0.5(1+7]) ( +y+0.5)(nl+n27/) 0’5d77

n 1
1/ i/ 0
SIEF IR IR

_ Nnx+ny;vy+0.5) Si( %, y:5)

7 o
1/ 1/
[ Hlxl‘] "l[ ZI’:IlyZ’] "

and
0 o L 1
ey = [ [TLTG DL 021wt ddadn

I(nx+nyy+0.5) f § 30514 ) ~EIOD) (4o <08

n 79
1/ 1/ 7
[T Ty

_ Tlnadmy+08) o g

n .
1/ 1/
[T et1 0 Lyl

where

Si( %, y;0)= f; 777051+ 0) TETD () Ty,
Sl x,¥:6) = fv 7]}*0.5(1 +7) —(x+3+0.5) (1, + ny7) _O'Sdﬂ.
Thus the fractional Bayes factor of H, versus H, is given by

Sy( %, y)  Si(x, 30
Si(x,y) Sz 30

Fo_
By =

Note that the calculation of fractional Bayes factor of H, versus H, requires an one

dimensional integration.
3.2 Bayesian Test Procedure based on the Intrinsic Bayes Factor

The element BJ of the intrinsic Bayes factor is computed in the fractional Bayes factor.
So using minimal training sample, we only calculate the marginal densities under H, and H,
respectively. The marginal density of (X, Y, is finite for all 1<i<#n;, 1<j<n, and

hypotheses. Thus we conclude that any training sample of size two is a minimal training
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sample.
The marginal densities »{(x;,v;) under H, is given by

ey = [ [ Al D1 0. 0m (. Dy

5d77

i+ +0.5 0 ; . —xi—y;—. —
= —P(—xxz}v—;,],—) . 7770+ ) T (g mgm) %y
Ix;+v;+0.5)
= T;}],“ T1(xi,yj),
and
my(xi, ) = fv fo Axi | DAy | 9, Dm0, AdAdy
x,+y+0.5 e —x;—y;—0U. —_
A xi!;j! ) ) 2751+ ) P 05(n1+n27/)
Ix;+v;+0.5)
= —M!;’T—Tz(xi,yj)’
where

7o ) ~ %~ y—0. _
Tl(xi,yj)zfo 27 (149 7 05(n1+n277) 054

To(x:, ¥) =f% 27N+ ) TR (g + ) T

Therefore the AIBF of H, versus H, is given by

pa — S xy) L Ty(x:,9)
21 L )

Si(x, ¥) 7 Tolxi, v,
where L= n;n,. And the MIBF of H, versus H, is given by

gy = S5 [_TM]

Si(x,9) Ty(xi, v

Note that the calculation of the AIBF and MIBF of H, versus H, requires an one

dimensional integration.

However AIBF are often not suitable for non-nested situation, especially when one-sided
hypotheses as here (see Dmochowski, 1996). An attractive alternative, given by Berger and
Pericchi (1996) is to embed the competing models in a larger encompassing model H, so that

all of the H,:=1,2 are nested within F,. The encompassing arithmetic intrinsic Bayes factor

(EIBF) is then defined as
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Z{B x(l)

where  BY( 2(0)= m x(D)/ m)( x()). Therefore the marginal densities m{(x;,y,)
under Hy(= H,UH,):7>0 is given by

i y) = [ [ Rl DA, 7 moln, i

_ Ix;+v;+0.5) 27514 ) IO () ey

x,-!y,—! 0
= T To(x,', yj).

where To(xi,y,-)=f[)w77y’+0'5(1+7y) 0 (4 myp) T%%dy. Therefore the EIBF of
versus M, is given by

Sy( %, ¥) %Tl(xi»yj)/ To(x;, v)

BEl .
a4 Si(x, ¥ Z]:Tz(x,-,y;)/ Tz, v |

Note that the calculation of MIBF and EIBF of H, versus [, requires an one

dimensional integration. In Section 4, we investigate our testing procedures.
4. NUMERICAL STUDIES

In this section, we compare the Bayesian test procedures with two frequentist methods.
The frequentist methods are as follow.
The conditional test (C-test) due to Prizborowski and Wilenski (1940) is based on the

conditional distribution of X, given X,+ X,=#%, where X,= Z‘X pand X,= Z‘X g are

the Poisson distributions with means #;4, and #,1,, respectively. Let k£, and £k, be the
observed values of X, and X, Note that the distribution of X, conditionally given
X,+ X,=k is binomial with the number of trials % and success probability

(A1 A3) = (ny [m)( A1/ A1+ (my [ m2) A,/ 25)]. ®)

This conditional test rejects HyA;/1,<c, whenever the p-values
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1=

iz | k)= 3 (A1 T-sori=e,

where p(c) is the expression in (8) with A,/A, replaced by c.

The unconditional test (E-test) by Krishnamoorthy and Thomson (2004) is obtained by
suitably modifying the binomial test due to Storer and Kim (1990). Since the unconditional test
is essentially based on the estimated p-values of the standardized difference. The test rejects

Hy A, — A,<d, whenever the p-values

_ o A _ I\ A~ '
e n( A2,+d)[ 7’l1( A2k+ d)]xl e ny 2‘,( ny A2k)xz
x1! x2!

Ms

I[ Txl,xzz Tkl./ez]sa’y

0Q
0 x22=0

Xy
where J{ - ] denotes the indicator function,

~  kitk dn, 5o X1/7’l1+ X/ my

T gty omptmyt X n ny
T .= Xi/m—Xy/n,—d T, = kym ~ky[my—d
X1 X, \/ VX ’ Ry, fey \/ Vk .

For our purpose, we set 7,=1 in Bayesian hypotheses testing, then c¢=1 and 4d=0 in

frequentist tests, respectively.

Example 1. This example is given in Snedecor and Cochran (1980). An experiment designed
to investigate various treatments for the control of cabbage loopers. Table 1 records the number
of loopers on 50 cabbage plants per plot after the application of five treatments to each of
four plots.

The posterior probabilities of H; being true are computed assuming equal prior
probabilities. The p-value, value of the Bayes Factor and the posterior probability are given in
Table 2. From Table 2, the frequentist tests are very conservative whereas the Bayes factors
are not. That is, the frequentist tests are biased to H,. Also with plot means, the fractional

Bayes factor and the intrinsic Bayes factors give faitly reasonable answers.

Table 1. Number of Loopers on 50 Cabbage Plants in a Plot

Treatment Loopers per Plot Plot Mean
1 11, 4, 4, 5 6.00
2 6, 4 3, 6 4.75
3 8 6, 4,11 7.25
4 7, 4, 9, 14 8.50

L
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Table 2. p-value, Bayes Factor and Posterior Probability

Teament | A0S DWW peopyopy | P PYPA
2vs 1 0.271 0.227 1.836 1984 2555 | 0353 0335 0281
2vs. 3 0.097 0.075 3234 3438 5365 | 0236 0225 0.157
2 vs. 4 0.027 0.020 5599 8671 17.267 | 0.152 0.103 0.055

Example 2. To show that the frequentist tests are more biased than the Bayesian testing
procedures, we examine the cases when (n,,ny)=(5,5), (k, k)= (20,21),(20,22), (20, 30)
and (n;, ny) = (5,10), (&1, k) = (20, 42), (20,44), (20,60).

Table 3. p-value, Fractional Bayes Factor and Posterior Probability

(1, ng) (ky, k) ]z;;:: 1;3_\,,1,3‘13: 31;1 PI;JI
5 5 20, 21 0.500 0.444 1.116 0473
20, 22 0.439 0.385 1.243 0446
20, 30 0.101 0.080 2775  0.265
5, 10 20, 42 0.488 0.438 1.024 0494
20, 44 0.418 0.370 1.142 0467
20, 60 0.069 0.055 2.560 0.281

For not so clear data, the C-test and E-test choose the hypothesis H; whereas the

fractional Bayes factor chooses the hypothesis F,. Therefore from this result, frequentist tests

are biased to FH,. However the fractional Bayes factor give fairly reasonable answers for all

Cases.
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