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Bayesian Curve Clustering in Microarray

Kyeong Eun Lee', Bani K. Mallick’

Abstract

We propose a Bayesian model-based approach using a mixture of Dirichlet processes
model with discrete wavelet transform, for curve clustering in the microarray data with

time-course gene expressions.
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1. Introduction

In this paper, we propose a mixture of Dirichlet processes model using discrete wavelet
transform for curve clustering in microarray data as a fully Bayesian approach. In order to
characterize these time-course gene expressions, we consider them as trajectory functions of
time and gene specific parameters and obtain their wavelet coefficients by discrete wavelet
transform. We then build cluster curves based using a mixture of Dirichlet processes pror.
Each iteration of MCMC algorithm generates the cluster structure of these coefficients as a
by-product (Escobar and West. 1998). Subsequently, the proposed models are applied to a yeast
cell cycle microarray data set: Cho et al. (1998).

2. Wavelet Based Dirichlet Process Model

The proposed method looks for relevant clusters in the observed curves by the posterior
sampling of the wavelet coefficients in Dirichlet process mixtures DP(a, G,). The prior of
covariance X is modified as in an example of normal structure in Escobar and West (1998)

and assume the following hierarchical structure :
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[ YiB:0"l ~ M X8 0%D,
[ B4 2 ~ DP(a, MN(y, ¢3)),

[0?] ~ 1@(—“2‘—,%),[01] ~ G(a,b)

where IG is Inverse Gamma distribuion and G is Gamma  distribution.
= diag({v},0<k<2’7',j <j<J)and is intended for shrinkage with

[v,k]~IG( 32’*, szk), 0<k<2’! j,<i<J

where »;.and s, are specified levelwise to maintain a mean of roughly 2~ for some
constant ¢ Here, the constant ¢ models the decay in the average size of wavelet coefficients
and, thus, the mean of the inverse gamma prior, E (v )=s/(r—2), 1302 is specified to
match this decay. For all & fixing ;. =c+2, we get s;. =cn2 7.

The posterior distributions are as follows:

2

(B Y, Bukric 5] = exp—F (Y- X8)( Y- X))
1
X (T;—IMN(”’OZZ)_'_?TI——:T ;5(/9113;'))
o< g o MN(u i.UZ V)+ ;413(5331)

where V=(Z "'+ ' u,=WZ 'u+ X' Y ;) and the weights g, are defined as

go < a¢( Y il Xu,0*(I+ X'Z X))
qpr X #( Yi| X.Bk,UZD

subject to Z_q ;=1, where ¢(316, 1) is the multinormal density function of mean ¢ and
1

covariance 7. Since the conditional probability of sampling a new £ is proportional to ¢, if
it is small relative to the sum of other ¢/s, the number of distinct £/s is also small and
samples of A’s change much. Let superscript * denote distinct values. Escobar and West
(1998) used a ‘‘remixing algorithm’* in order to avoid this problem by resampling g; at each

iteration, and to, additionally, improve the convergence.

(8] Y,0% ZlocMN(¢}, 6% V ;%) for each j=1,--,1"



Bayesian Curve Clustering in Microarray 41

where Vi=(Z '+ JN) Lui= V(S et jg;j) X' Y ;) and f(;) is the index set of

#h cluster.

Since
[o% 8 Y] o (71—)1 mexp{——“ XY XB)( Y~ X))
() e [ Bp w2 )
<165 ),
the full conditional distribution of o after integrating out £ is

125 3)

where S= g(p'zﬂwr Y/ Y, —p; V '%¢)+v, and N=I-T. In addition, with

(B1Z, 6%~ Ny, ¢23), the posterior distribution of scaling parameters v ; are drawn as

*

*
rj

(valBi o)~ IG( Szjk — )

S

where sh=1I+s; and 7j=(0% ! i:l(Bik“”k)z'*‘ 7w The precision parameter ~-in the

Dirichlet process plays an important role in determining the number of clusters. Assuming a
continuous prior density for p(e), Escobar and West (1995) provided a distribution of number
of components through Antoniak (1974)’s results

(M, D=c (INNa" o)/ [{a+D, ‘=1, I

where ¢,=p(I*|la=1,1) and I(-) is the Gamma function. According to the relationship
between the Gamma function and the Beta function,

Na) _ (at+DBla+t+], 1)
INa+D ~ alXD)

where G( -, -) is the Beta function, the p(e}7*) can be written as follows:

pal™) o< p(I"e)p(a) 1
< p@a(a+D [ 70U—n " ay
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and it can be considered as the marginal distribution (of ) from a joint distribution for «

and a latent variable 7 such that
pla, Ao p@a’ (a+ Dy (1—n) "
Therefore choosing p(e) to be G(a,b), leads to

padl*, p~n,G@+1",b—log(M+(1—x,) G(a+I"—1,b— log (7)),

T, _  agt+lI'—1
whete 17— =, Tog () -

Next, 7 is updated as

(e, IN<y(1—7p " '=Bla+1,D.

We apply our proposed hierarchical model to two yeast cell cycle data and check the
model adequacy using the Bayesian Information Criterion, BIC,



