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Abstract

This study deals with the part-machine grouping
(PMG) that considers realistic manufacturing
factors, such as the machine duplication,
operation sequences with multiple visits to the
same machine, and production volumes of parts.
Basically, this study is an extension of
Won(2006) that has adopted fuzzy ART neural
network - to group parts and machines. The
proposed fuzzy ART neural network algorithm is
implemented with an ancillary procedure to
enhance the block diagonal solution by
rearranging the order of input presentation.
Computational experiments applied to large-size
PMG data sets with a psuedo-replicated
clustering procedure show effectiveness of the
proposed approach.

1. Introduction

Basically, this study is an extension of Won
(2006) that has adopted fuzzy ART neural
network to group parts and machines for the
design of cellular manufacturing system.
Won(2006) proposed two-phase methodology
to solve the PMG problem that considers realistic
manufacturing factors, such as the operation
sequences with multiple visits to the same
machine and production volumes of parts. Based
on the application of production data-based
part-machine incidence matrix(PMIM) (Won &
Lee 2001), phase 1 (clustering phase) of the
two-phase methodology has attempted to find
part families and machines cells quickly with
Fuzzy ART neural network algorithm. Phase 2
(reassignment phase) has sought to find the best
proper block diagonal solution by reassigning
exceptional parts and machines with the purpose
of minimizing inter-cell part moves and
maximizing within-cell machine utilization. The
two-phase methodology has been justified on

large~size data sets generated with a
psuedo-replicated clustering procedure which is a
modification over conventional replicated
clustering procedure.

In this study some extension will be
conducted over the existing two—-phase
methodology. First, phase 1 will be extended
with an ancillary procedure to enhance the block
diagonal solution by rearranging the order of
input presentation. Second, the constraint of
machine duplication will be incorporated into the
existing procedure of phase 2. Such an extension
can lead to improvement of the applicability of
the existing two-phase methodology since real
manufacturing shops usually have multiple,
functionally identical machines for a given type
of machine(Mini et al. 1990). The proposed
methodology will be justified on large-size data
sets generated with the psuedo-replicated
clustering procedure.

2.Methodology

2.1 Extended procedure of phase 1
The extended procedure of phase 1 re-adopts
the type I production data-based PMIM in Won
and Lee(2001) and the input representation
scheme into Fuzzy ART neural network proposed
in Won(2006). For the explanation of
terminologies, readers are referred to Won(2006).

In our extended procedure of phase 1, we
extend Chen and Cheng’s rearrangement
algorithm  (1995) applied for the binary
PMIM-based PMG problem into the
rearrangement  procedure applied for the
production data-based PMG problem. The decay
of exemplar template occurs so often when the
fuzzy ART algorithm is applied to the PMG
problem. The objective of extension of existing
procedure of phase 1 is to quickly bring the
most similar parts together.

Chen and Cheng’s rearrangement algorithm
identifies the exceptional machine (row) vectors
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and rearranges the machine vectors with less
“1”s outside in descending order of the number
of “1”s in the machine/part cluster. Our modified
part order-rearrangement procedure starting with
incumbent solution of part families is applied to
the parts of each part family. Since our modified
part order-rearrangement procedure is applied in
each part family-base not the whole part-base, it
can lead to significant saving of computational
efforts in sorting the part vectors. The
part-order rearrangement procedure proceeds as
follows:

Part order-rearrangement procedure

Step 0 : Find the order of part vectors from the
incumbent solution of part families obtained
by applying the fuzzy ART algorithm and
their machine cells obtained by applying the
machine-assignment rule.

Step 1 : Identify the exceptional part vectors and -

set them aside.

Step 2 : For each part family, rearrange the part
vectors with less flows outside in descending
order of flows in the part/machine cluster. In
the case of a tie, the part with more portions
of operations within the part/machine cluster
is presented first. In the case of a tie again,
the part with the minimum flows outside the
part/machine cluster is presented first.

Step 3 : Present the exceptional part vectors that
were set aside in step 1.

2.2 Extended procedure of phase 2

The objective of the extended procedure of phase
2 is to find the cell configuration minimizing the
sum of machine duplication if exceptional
machines have extra identical machines.

An exceptional machine with extra identical
machines available is duplicated to its next most
preferred cell except its parent cell so as to
minimize inter-cell part moves. Ties are broken
by duplicating exceptional machine to the cell
with the most portions of operations for parts so
as to maximize within-cell machine utilization.
The machine duplication rule is stated as
follows:

Machine-duplication rule

®* For each exceptional machine with extra
identical machines available, find its next
most preferred cell except its parent cell and
duplicate it to that cell.

* If ties occur, select the machine cell which
processes the most portions of operations for
parts.

¢ In the case of a tie again, select the smallest
machine cell.

2.3 Extended two-phase procedure
With the part-order rearrangement procedure and

the machine duplication rule, the extended

two-phase procedure is described as follows:

Clustering stage:

Step 0 : Set the iteration number k=0 and
prepare for the input vectors.

Step 1 : For the specfied vigilance threshold p,
choice parameter & and learning parameter (3,
apply Fuzzy ART algorithm to cluster parts
into families.

Step 2 Assign machines fo their most
appropriate cells.

Step 3 : Find exceptional parts and use part
order-rearrangement procedure to rearrange
them,

Step 4 : If k <the predetermined target number
of iteration, set k=k-+1 and go to Step l.
Otherwise, go to Step 5.

Enhancement stage:

Step 5 © Apply the weighted maximum density
rule to reassign improperly assigned parts and
machines to their most appropriate part
families and machine cells.

Step 6 Duplicate identical machines with
machine duplication rule.

Step 7 ! If stopping condition is satisfied, stop.
Otherwise, go to Step 5 and repeat.

3. Experimental results

3.1 Experiments with small-size problem
The proposed algorithm has been applied to the
data set in Gupta and Seifoddini (1990) with 43
part types and 16 machine types. Since the
authors do not provide the data on replicate
machines, however, we adopt the information of
replicate machines provided in Rao and Gu
(1995) as follows:

* Machine type 6 : four
* Machine type 8 : three

® Machine type 11 : two.

In the experiment with this data set, the
fuzzy ART neural network with o= 0.5 and
B#=0.1 is applied and the target number of
itération for phase 1 is set at 2. To evaluate the
performance of the block diagonal solution, the
weighted grouping capability index (WGCI) in
Won(2006) has been re-adopted.

On this problem, Rao and Gu's algorithm
(1995) requires six extra machines to be
duplicated, whereas our extended two-phase
procedure requires five extra machines to be
duplicated under the identical number of clusters
with the value of WGCI equal to 95.93%.

3.2 Experiments with large-size
problems

To test the applicability of the proposed
two-phase procedure on large-size data set, the
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data set used in the previous subsection has
been expanded with the psuedo-replicated
clustering procedure in Won(2006) with various
expansion levels. In our experiments, the
expansion levels equal to 2, 3, 4, and 5 have
been applied. The target value of WGCI
revealing the robustness and recoverability of the
proposed algorithm to expanded problems is set
at 95.93% under the configuration of clusters not
less than 8, 12, 16, and 20, respectively, which
are the minumum qualification numbers of
clusters for each expansion level and the extra
duplicated machines not more than 10, 15, 20,
and 25, respectively, for each expansion level,
For each expansion level, 30 problems have been
generated and the order of part input vector has
been randomly scrambled.

The extended two—-phase procedure has been
written in C++ object-oriented programming
language and implemented on an IBM compatible
Pentium III PC with 1 GHrz. The experimental
results are reported in tables 6. The clustering
stage of phase 1 has been implemented by
lowering the vigilance threshold p by 0.01 from

0.95 to 0.70 for each expanded problem instance.

«Table I> Experi i cesults
Engrenians taat

B 3 4 : :
Fropian N 3 WEUL DM o WG NDM| i WECH NDXM
i SRR 18 (088 SLES] B D4 w3
GBI PEALT 13 0 2343 2 030 RS W
IR P W o8y B B o pres 2

PEIE

054 FR3E 15 (043 933 B

W
S 9SSR 18 e84 A% oW gLl 2
G6 seos 1 iem W 36 57T 3 M
57 B3 13 e s34l 19 o8 sem %
%
3
e

@ i iwidiwmia

Do 9043 15 1009 9386 30 07T RLEEL 2
DA BOL 1 1807 984 2 G7p giag
S711 PRESI 14 IUTY: 34 1R I OBY A0 M3
SIP Bl 16 S0t gam 26 OTe B3 M
S8 Bl 15 o8 M B 038 pap ¢
TAS AR 18 eT Me 3 8% % 3
5.75) $336 14 (083 fodb: 36 o8 PA 23
LAGD PHARD 13 1042 928D W 10B2D FITFL XD
535 9338 13 108l ML4E W Gsl. EE
STTE FISIL XS ILVE 2380 1P (084 PRI M
GEE 40T 18 16T MBS a3l o
0401 $2.05] 10 (08B 9SO M0 | 483 H.8

4

23
X D4 PR3 L& LK DO M 0B RS 2
3 S04 $333: 18 0T LRI 36 I o8 2R M
32 S0 PRITE 14 Agd: MAeal 26 LT SLPR 238
I3 B8 FEES] U5 O ST W (ORX PRLUF 25
4 H3 P8 1E Lse: 3080 2% L &T5: NI4T 4
-] ST PEATI IS RN PRSI 2F I OR4D Plas 24
i LI P44 18 OB JOMEE 2 1478 93470 24
7 S.821 S3ET BF TQTRD 934D 20 (LT §R3IC A
5 G931 PLETI 15 NG MASD 16 oD MM X 6T @a 1
% 090 $1A3] 10 (LS $234 14 1OT8] $4T41 30 081 95180 2
» AP PAL3T 10 TORA PSR 13 Togp RAEL 1B 1O 91080 W
Avage T PE PALL: 4.8 P3¢ 187 o4t 28

<Table 1> shows the experimental results. It
can easily be noticed from <table 1> that as the
data expansion level increases the average value
of WGCI tends to decrease slightly. But the
average values of WGCI at the expansion levels
of 4 and 5 do not show significant gap.
Decreasing values of WGCI occur at the expense
of slightly more blocks than the minimum

qualification number. of blocks and slightly less
extra duplicated machines than the maximum
qualification number of extra ones. For example,
at the expansion level of 5 where the average
experimental value of WGCI is lowest, the
extended two-phase procedure tends to produce
the solution with lower WGCI than the reference
solution before expansion within the range of 3%
on the average.

4. Concluding remarks

In this study, an extended two-phase procedure
over Won(2006) has been developed to solve the
PMG problem with multiple, functionally identical
machines for each type of machines.

To enhance the solution quality from the
application of fuzzy ART algorithm in phase 1,
an ancillary procedure to enhance the block
diagonal solution by rearranging the order of
input presentation has been added to the
previous stage in Won(2006). Extended phase 2
seeks to find the best proper block diagonal
solution by reassigning exceptional parts and
machines and duplicating multiple identical
machines to cells with the purpose of minimizing
inter—cell part moves and maximizing within—cell
machine utilization.

The experimental results with large-size data
sets shows the robustness and recoverability of
the proposed procedure.
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