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ABSTRACT

A common problem encountered in product or

process design is the selection of optimal
parameter levels which involve simultaneous
consideration of multiresponse variables. To date,
various methods have been proposed for
multiresponse optimization. In this paper, we
bﬁeﬂy review the existing methods and then
discuss some recent advances in this field.

1. INTRODUCTION

Most of the work in response surface
methodology has focused on the case where there
is only one response of interest. However, a
common problem in product or process design is
to determine the optimal parameter levels when
there are multiple responses which should be
considered simultaneously. Such a problem is
called a multiresponse problem [13].

To date, various methods have been proposed
for multiresponse optimization. In this paper, we
briefly review the existing methods and then
discuss some recent advances in this field.

2. EXISTING APPROACHES IN
MULTIRESPONSE OPTIMIZATION

2.1. Priority-based approach

The priority-based approach selects the most
important response among a number of responses
and uses it as the objective function. Myers and
Carter [23] proposed an optimization formulation
that maximizes (or minimizes) the primary
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response with an equality constraint on the other
response. Biles [2] extended this idea by
allowing not only more than two responses, but
also inequality constraints on the secondary
responses.

2.2. Desirability function approach

The desirability function approach transforms
an estimated response (e.g., the ith estimated
response y;) into a scale-free value, called a
desirability (denoted as d; for ;). The overall
desirability D is defined by combining the
individual desirability values (i.e., d;’s). Then,
the optimal setting is determined by optimizing
D.

Harrington [8] first proposed a simple form of
a desirability function. Derringer and Suich [6]
extended Harrington’s approach by suggesting a
more systematic transformation scheme from y;
tod;.

2.3. Loss function approach

The loss function approach aims to find the
optimal parameter setting by minimizing the
expected loss function. Pignatiello [27] first
proposed the use of a squared error loss function
in multiresponse optimization.

Vining [30] proposed a modification to the
Pignatiello’s model by employing a vector of
the estimated responses ¥(x) in loss function,
instead of y(x). Ko et al. [15] proposed an
improvement over the Pignatiello’s and Vining’s
models. They employ §$,.(x) in the loss
function, as opposed to y(x) in the Pignatiello’s
or $(x) in Vining’s model.



2.4, Process capability approach

The process capability approach derives a
process capability index using the estimated mean
and standard deviation of a response. The overall
capability index is obtained by combining the
individual process capability indices. Then, the
optimal setting is determined by maximizing the
overall capability index.

Barton and Tsui [1] proposed a performance
centering as a process capability index. Plante

[28] extended the Barton and Tsui’s approach by

developing several multicriteria models based on
the performance centering. Plante [29] proposed
the use of two typical process capability indices,
Cpk and Cpm. '

2.5. Probability-based approach

The probability-based approach assumes a
multivariate  probability distribution of a
multivariate response Y. It first models the
distributional parameters in terms of input
variables and then finds the optimal setting which
maximizes the probability that all responses
simultaneously meet their specifications.

Chiao and Hamada [4] first proposed this
approach with a multivariate normal distribution

assumption. Peterson [26] and Mir6-Quesada et al.

[20] estimated the distributional parameters in the
multivariate ¢ distribution using a Bayesian
approach.

3. RECENT RESEARCH ISSUES

3.1. Interactive approach to multiresponse
optimization

Most of the existing work in multiresponse
optimization is categorized into prior preference
articulation methods [24, 25]. Recently, Jeong and
Kim [9, 10] and Kéksalan and Plante [16]
proposed an interactive method. Although not
included in the major approaches, Montgomery
and Bettencourt [22], Mollaghasemi and Evans
[21] and Boyle and Shin [3] also proposed
interactive methods.

Interactive methods are desirable in that it is
" easy and effective to extract the DM’s preference
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since he/she has only to provide the information
by a local level in an interactive manner.

3.2. Consideration of both mean and variability

The major focus of the existing approaches to
multiresponse optimization is on the location
effect only, ignoring the dispersion effect of the
responses. Kim and Lin [14] proposed an
integrated modeling approach to simultaneously
optimize both the location and dispersion effects
of multiple responses. Lee and Kim [17] also
proposed an expected desirability concept to
consider both the location and dispersion effects
in the well-known desirability function
framework.

3.3. Determination of weights for bias and
variance in dual response optimization

Lin and Tu [19] proposed a simple, yet
effective approach based on mean squared error
(MSE) minimization. A natural extension of
MSE, called a weighted MSE (WMSE), is
formed by imposing the relative weights on the
bias and variance terms. Jeong et al. [11]
proposed a systematic method to determine the
relative weights of bias and variance in
accordance with a decision maker’s preference
structure. As an extension of the aforementioned
work, Jeong et al. [12] proposed a scheme to
construct a probability distribution of the
relative weight using the Bayesian approach.

3.4. Data mining approach to multiresponse
optimization

The patient rule induction method (PRIM) [7]
is an alternative method to the response surface
methods. PRIM aims to find optimal input
variables directly from historical data without
constructing an explicit functional model. PRIM
has been applied successfully to various areas
such as geology, finance, bioinformatics, and
process optimization [5]. The conventional
PRIM has been developed and applied for the
single response case. Lee and Kim [18]
proposed an extended version of PRIM, called
MR-PRIM, to accommodate multiple responses.



4. CONCLUDING REMARKS

The existing work in  multiresponse
optimization has been reviewed. Some recent
advances have also been discussed. The research
in this field has been quite active in the literature
in recent years. Considering its applicability in
real-world problems, more research endeavors are

warranted in the future.
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