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ABSTRACT

Optimal engineering design is challenging because
nonlinear objective functions need to be evaluated in
a high-dimensional space. This paper presents a data-
mining aided optimal design method. The method is
employed in designing an optimal multi-station
fixture layout. Its benefit is demonstrated by a

comparison with currently available optimization.

methods.
1. INTRODUCTION

An optimal design problem generally needs to
evaluate nonlinear objective functions in a usually
high-dimensional space. Nonlinear programming
methods  usually converge to a solution in a
relatively short time. But the quality of the final
solution highly depends on the selection of an initial
design and these methods are thus known as “local”
optimization methods. In order to escape the local
optima, one would prefer to use random search based
method such as simulated annealing (SA) [1].
Empirical evidence [2] showed that SA is indeed
quite effective in escaping local optima but at the
expense of considerably slow convergence.

As an example of optimal engineering design, we
consider the assembly process of the side frame of a
Sport Utility Vehicle (SUV) in Fig 1. The final
product, the inner-panel-complete, comprises four
components: A-pillar, B-pillar, rail roof side panel,
and rear quarter panel, which are assembled on three
stations (Stations I, II, III). Then, the final assembly
is inspected at Station IV (M,-M,, marked in Fig. 1d
are key dimensional features). The dimensional
quality measured at those key features is mainly
determined by the variation input from fixture
locators P;-Pg. The design objective is to find the
optimal fixture layout of a multi-station assembly
process so that the product dimensional variability
(measured at M;-M,) is insensitive to fixture
variation input. '

There are eight fixture locators (P,-P;) involved in
the above-mentioned assembly process. Each part or
subassembly is positioned by a pair of locators. For
the sake of simplicity, we are only concerned with a
2-dimensional assembly in the X-Z plane, where the
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position of a locator is determined by its X and Z
coordinates. Thus, the design space has 16
parameters and it is continuous, meaning that there
are infinite numbers of design alternatives. We can
generate a finite candidate design space via
discretization, say, using the resolution of 10
millimeter (the size of a locator’s diameter) on each
panel. This resolution level will result in the
number of candidate locations on each panel to be
239, 707, 200, and 3496 respectively. The total
number of design alternatives is therefore
CPP% Gy %G C,*%~8.6%107, where C, is a
combinational operator. Apparently, the number of
design alternatives is overwhelmingly large and a
lot of local optima are embedded in the 16-
dimensioned design space. Any local optimization
method will hardly be effective and SA random
search could be inefficient.
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Figure 1. Assembly process of an SUV side frame

Although the general idea could help in
discovering valuable design selection guidelines,
there is a major obstacle to apply this idea to
engineering design problems, especially those with
a computationally expensive objective function.
The obstacle is that for a new design without
enough historical data of designs and operations,
generation of design selection rules needs the
evaluation of the objective function of all designs in
a design library. In order for the design library to
be representative for the large volume of design
alternatives, one will have to include enough
number of designs in the library, which could be too
many to be computationally affordable for
generating the design selection rules.



Igusa et al. [3] proposed a more sophisticated
" procedure, which circumvents frequent evaluation of
an expensive objective function. They employed a
much simpler feature function together with a
clustering method to reduce the number of designs
whose objective function need to be evaluated for the
generation of a classification tree.

In this paper, following the general concept
proposed by Igusa er al. [3], we develop a data-
mining aided design optimization method for the
aforementioned multi-station fixture layout design.
The method includes the following components: (1) a

uniform-coverage selection method, which chooses -

design representatives among original design
alternatives for a non-rectangular design space; (2)
feature functions of which evaluation is
computationally economical as the surrogate of a
design objective function; (3) a clustering method,
which generates a design library based on the
evaluation of feature functions instead of an objective
function; (4) a classification method to create the
design selection rules. The design effectiveness and
efficiency of the proposed method is demonstrated by
comparison with SA and local optimization methods.

2. DATA-MINING AIDED OPTIMAL DESIGN
METHOD

2.1 Design Objective and Overview of the Method
The goal of fixture layout design is to find an
optimal layout so that assembly dimensional
variability is insensitive to variation inputs from
fixture locators. A linear variation propagation model
has been developed in [4] to link the product
dimensional deviation (measured at M;-M;,) to
fixture locator deviations at P,-Pg on three assembly
stations. Based on the variation model, a sensitivity
index S was developed in [5] as a non-linear function
of the coordinates of fixture locators, represented by
the 16x1 parameter vector 0=[x, Z X, Z,7>
where X; and Z; is the pair of coordinates of locator P;.
Using this notation, the fixture layout design is to
find a set of @ that minimizes the sensitivity S while
satisfying the geometric constraint G(-), i.e.,

min S§(8) subject to G(6)>0- (1)

Equation (1) . actually captures a general
formulation of a non-linear optimization problem. In
the above formulation, without loss of generality, we
present a minimization problem. A maximization
problem can be solved in the same fashion. Generally,
the objective function S(-) in an engineering optimal
design is complicated. The efficiency of an optimal
design algorithm can be loosely determined by how

often S(-) is evaluated -- we denote by T the
computer time of evaluating S(-) once.

There is virtually no efficient method, allowing
us to directly optimize over the huge volume of
original design alternatives, such as the as many as
8.6x10*°combinations in the fixture layout design.
The proposed method will start with extracting
design representatives from original design
alternatives. However, it is often the case that the
design representatives, although much less than the
original design alternatives, are still too many to be
used as the design library. In this paper, we use a
clustering method with a set of computationally
simple feature functions to facilitate the creation of
a design library. This procedure will allow us to
eventually have an affordable size of designs as a
training dataset in a design library. The overall
framework is illustrated in Figure 2.
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Figure 2. Data-mining aided design optimization

2.2 Uniform Selection of Design Representatives

Unless one has profound knowledge of which
part in a design space is preferred in such a
selection, a safer way for the selected design being

.good representatives of the original design set is to

select them from a design space as evenly as
possible. Igusa et al. [3] suggested to randomly
select design representatives from the set of design
alternatives. The problem of random selection is
that probabilistic uniformity does not guarantee an
evenly geometric converge in a design space. When
the design space is of a high dimension and the
sample size is relatively small (e.g., 2,000 chosen
from 8.5x10% alternatives in Igusa’s case), the
selected sample will typically cluster in a small area
and fail to cover large portions of the design space.
A space-filling design, widely used in computer
experiments [6], aims to spread design points
evenly throughout a design region and appears to fit
well into our purpose of design representative
selection. A space-filling design is usually devised
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using Latin Hypercube Sampling (LHS) [7] or using
a uniformity criterion from the Number-Theoretic
Method (NTM) [8].

Step 1. Uniformly discretize the candidate design
space on each plane using the 10-mm
resolution.

Step 2. One each panel, the first locator is
sequentially chosen to be at those locations
from the discretization process. Once the first
locator is selected, the second locator is
randomly selected on the same panel among
the locations whose distance from the first
locator is greater than the half of panel size
(dy/2). Denote by Q§_°) the resulting
candidate locator set for panel j and by #; the

) number of locator pairs included in Qg").

Step 3. For i=1 ... max(n;), randomly select one

locator pair from Qs."“) forj=1,2, 3, 4
without replacement and combine these four
locator pairs as one design representative for
the multi-station assembly. Whenever a
QYD becomes empty, simply reset
Qv = oo,

In Step é, the uleiformity of the first locator on each
panel is a result of the uniform discretization.
However, the uniformity of the second locator is not
directly controlled since it is from a simple random
sampling. The second locator is chosen to be at least
dy/2 away from the first locator because of the
aforementioned between-locator distance constraint.
After Step 2, the set ((” has the largest number of
locator pairs, ns=3,496. Step 3 actually performs a
stratified sampling to generate locator combinations.
The stratified sampling will go over Q! once but
will have to go over Q' for panel j=1,2,3 multiple
times. That is the reason behind the reset of a ¢V
when it is empty. Eventually, a total of n,=3,496
combinations of locators is generated as design
representatives.

2.3 Feature and Feature Function Selection

In order to avoid direct and frequent evaluations of
objective function S(-), we use a set of feature
functions to characterize the system performance. A
feature function maps an engineering system to a
feature, which is tied to the design objective. For
example, the distance between two locators in the
fixture design can be considered as a feature.
Generally, any physical quantity that is potentially
tied to the design objective can be used as a feature.
The set of feature functions is actually a surrogate of
the design objective function. ‘

F1(8)=The largest value of between-locator distances;
Fy(0)=The second largest value of between-locator

distances;

F3(0)=The mean of between-locator distances;

Fy0)=The second smallest value of between-
locator distances;

F5(0)=The smallest value of between-locator
distances.

F¢(8) = The largest value of distance change ratios;
F5(8) = The mean value of distance change ratios;
F3(0) = The smallest value of distance change ratios.

Please note that the calculation of the above eight
feature functions is very economical and their
definitions are also scalable.

2.4 Clustering Method

Using the feature functions as the surrogate of a
design objective, the data-mining aided design
method will cluster the design representatives into a
few groups. Recall that clustering is to segment a
heterogeneous population into a number of more
homogeneous subgroups [9]. Empirical evidence
shows that a clustering method can group the
uniformly scattered design representatives so that
the resulting clusters are adapted to local optimal
areas [3]. Therefore, a group of design
representatives after clustering can be loosely
considered as a set of designs associated with a
local response surface and its center will be around
a local optimal point. For this reason, a design
library can then be created using a few designs
from individual local areas, which constitutes of
much less number of designs.

2.5 Classification Method

We will perform classification on the dataset {F;,
Si} in the design library to generate the design
selection rules. Local optimization can be used to
evaluate a few designs chosen by the selection rules
and yield the final optimal design. In many
occasions, as we will see in Section 4, a local
optimization method may not be necessary, i.e., a
direct comparison among all the selected designs
may have given us a satisfactory result.

2.6 Selection of K and J

One issue we left out in Section 2.4 is how to
select K (cluster number) and J (seed design
number), which are obviously related to both the
optimal objective value -a design can achieve and
the time it consumes.

Unfortunately, a theoretical tie between the
clustering result and the behavior of a response
surface has not yet been established. Using the
multi-station fixture design at hand, we will further
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investigate this problem through an experimental
design approach. Two responses are chosen for a
given combination of K and J, namely the smallest
sensitivity value it finds (before a local optimization
method is applied) and the time it takes. For this data-
mining aided optimal design, the overall computation
time can be approximately calculated by
To+KJ-T+N,T, where T, is the time component
independent of the choice of K and J and N, is the
number of designs in the selected “good” design set
when the whole design representatives pass through
the design selection rule. Component T, is also

known as the overhead time due to uniform-coverage

selection and clustering/classification processes. The
second and third components are directly related to
the times that the objective function is evaluated. For
a given engineering design problem and a choice of K
and J, the algorithm computation time will be largely
determined by the third component, or equivalently,
the value of N, For this reason, we use Ny as the
second response variable.

3. PERFORMANCE COMPARISON AND
DISCUSSION

In this section we compare the algorithm
performance of our data-mining aided optimal design
(before a local optimization is applied) with other
optimization routines. Our design algorithm is
implemented with K=9 and J=12, the optimal
combination found in Section 2.6.

The performance indices for comparison include
the lowest sensitivity value an algorithm can find and
the time it consumes. The objective function for the
assembly process in Figure 1 is not really an
expensive one due to various simplifications we
made in variation modeling. The T is only 0.018
seconds on a computer with a 2.20GHz P4 processor.
In this study, we purposely use this objective function
so that we afford to perform the exploration in
Section 2. When a computationally inexpensive
function is used, the overhead computing cost T
kicks in, which may blind us the benefit of the
method for a complicated system with more
expensive objective functions. In order to show that
aspect, we also include the number of how many
times the objective function is evaluated for
comparison. When T is large, the time for function
evaluation dominates the entire computation cost.

We implemented the above-mentioned optimization
algorithms in MATLAB (for simplex search, we used
the MATLAB function “fminsearch”). They are
executed on the same computer. The average
performance data of 10 trials are included in Table 1.

Table 1. Comparison of optimization methods

Optimization Methods s | Hme | Time for function
Simplex search 6.825 73.8 3200T

SA (kg =0.9) 3.831 542.8 28,503 T

SA (ks =0.95) 3.979 1 2595 13,606 T
Data-mining aided method | 3.894 54.3 2837

4. CONCLUDING REMARKS

This paper presents a data-mining aided optimal
design method. The method is employed to
facilitate the optimal design of fixture layout in a
four station SUV side panel assembly process.
Compared with other available optimization
methods, the data-mining aided optimal design
demonstrates clear advantages in terms of both the
sensitivity value it can find (only 1.6% higher than
what a2 SA found) and the computation time it
consumes (shorter than a simplex search and one-
tenth of what a SA takes). The benefit could be
more obvious for a larger system with a
computationally expensive objective function.
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