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ABTRACT

The implementation of a screening procedure for
removing non-conforming products has become a common

practice especially in high-tech manufacturing industries. .

Screening procedures involve a measurement on the quality
characteristic of -interest since decisions regarding the
conformance to specifications are usually made on the basis
of the realization of measurement. A significant variability
in  measurement procedures may result . in  the
misclagsification of an outgoing product (that is, falsely
acoepting defectives or falsely rejecting conforming items),
which may lead to wrong interpretation on product quality.
It may thus be necessary to consider the impacts of
misclassification errors due to measurement variability
when designing screening procedures. Along this line, this
article investigates the design of screening procedures
based on the assessment of misclassification errors. The
main objective is to determine the screening limits on
. measured values so that two types of misclassification
errors may properly be compromised.

1. INTRODUCTION

Screening procedures are decision- making processes to
improve product quality by determining the most
economical set of screening limits under al00% inspection
scheme. As advanced types of automated inspection
equipment become an integral part of modern
manufacturing systems, the implementation of the
screening procedures in manufacturing processes has
experienced an increased support in recent years and
become an attractive means for quality improvement.
Screening procedures involve a measurement of the quality
characteristic of interest since decisions regarding the
conformance to specifications are usually made on the basis
of the realization of measurement for the quality
characteristic. As more companies strive to improve
product quality, enhancement of measurement procedures
associated with the complete inspection scheme has
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become an integral part of quality improvement.
However, measurement errors are commonly incurred
due to the variations in imprecise devices and/or
unskilled operators. Since a significant variability in
measurement - procedures may lead to .a wrong
interpretation of the product quality, understanding the
notion of measurement variability may be crucial for
quality improvement. From this perspective, the study of
measurement variability has recently drawn a particular
attention from researchers in the context of the so-called
gauge study. See, for example, Lin et al. (1997), Mader et
al. (1999), McCarville and Montgomery (1996),
Montgomery and Runger (1993a, b), Tsai (1988), and
Vardeman and VanValkenburg (1999).

A significant variability in measurement procedures
may lead to economic penalties associated with the
misclassification of outgoing items. For example,
suppose that a defective is falsely accepted and shipped
to the customer. A monetary loss may then be incurred to
replace the defective items. On the other hand, rejection
costs, such as scrap and rework costs, may also be
incurred by the manufacturer for falsely rejected
conforming products. In this regard, Mader ez al. ( 1999)
recently evaluated economic impacts of measurement
errors for the .complete inspection plan. There have also
been several studies to reduce the impacts of
measurement errors when designing screening procedures.
The most immediate approach to control measurement
errors may be the selection of measurement precision
level since economic penalties associated with
measurement errors may be avoided by improving the
level of measurement precision. As more precise
measurement devices and/or better-trained operators are
required, inspection cost may be increasingly incurred to
reduce economic penalties. Thus, there is a need for a
tradeoff among cost factors associated with measurement
errors and the selection of measurement precision level.
Readers are referred to Chandra and Schall( 1988), Chen
and Chung (1996), and Tang and Schneider (1988).

Regardless of how precise the measurement procedures



are, however, measurement errors are commonly incurred.
Given the level of measurement precision, it will thus be
beneficial to design screening procedures based on the
assessment of misclassification errors. In this regard, this
article proposes optimization models for determining
screening limits on measured values so that the
probabilities of two types of misclassification errors (i.c.,
falsely accepting defectives and falsely rejecting
conforming items) may properly be compromised. The
assessment of misclassification errors is first investigated in
section 2, based on which the screening limits on measured

values may be determined. A numerical example is then -

provided to demonstrate the proposed models in section 3,
and conclusions are drawn in the last section.

2. ASSESSMENT OF INSPECTION ERRORS

Measurement errors are commonly incurred which may
lead to the misclassification of outgoing products such as a
false acceptance of defective items and a false rejection of
conforming ones. The false rejection of conforming
products is often referred to as a type I error (or producer's
risk) whereas the false acceptance of defectives as a type II
error (or consumer's risk). Since these misclassification
errors may result in economic penalties, there is a need for
incorporating the impacts of misclassification errors when
designing  screening procedures. The effects of
misclassification errors are depicted in Figure 1, where L
and U represent the lower and upper specification limits,
respectively, and x denotes the true value of the quality
characteristic. The big curve represents the density function
of the actual value of the quality characteristic while the
small curve represents the density function of the
realization of measurement given the actual value. It is
worth noting that the probability of misclassification errors
may be adjusted by setting the screening limits on
measured values different from the specification limits.
When the screening limits are located inside the
specification limits, for instance, the probability of a false
acceptance error may be reduced with a higher risk of false
rejection. On the other hand, a lower probability of a false
rejection error may be achieved at a higher risk of false
acceptance by setting the screening limits outside the
specification limits.

Let X be the actual value of the quality characteristic of
interest, which is normally distributed with mean 4 and
variance 0'3. Denoting the measured value of X by 7Y,
further assume that the conditional distribution of ¥, given
that X = x, is normally. distributed with mean x and variance
o’ . Suppose that the conformance of a product is

yix
determined on the basis of measurement in spite of

-366-

measurement errors. Then, a product passes the
inspection and is shipped to the customer if ¥ e[v,w],
where v and w represent the lower and upper screening
limits on measured values, respectively. Let g
represent the probability of a false acceptance error, that
is, =P elv,w]| X 2[L,U])> which is then given by

p=| [ [ty [ [ hix,yyasay|
x[l— { f(x)dx]_] 1)

where f{x) and A(x,y) represent the marginal density
function of X and the joint density function of X and ¥,
respectively. It can easily be shown that X and Y jointly
follow a bivariate normal distribution with a mean vector
of (g,p) and a variance-covariance matrix of X
given by

5 =[ Var(X) Cow(X, Y)] = [o-f of}

Cov(X,Y) Var(Y) o’ o?

x y

where 0'}2, represents the variance of marginal
distribution of Y, and 0'y2=0':+0',24x' Note that the
correlation coefficient of X and ¥, denoted by y, is
defined as

_ Cow(X,Y)

"= ar(x) Var(Y)

=9
Oy

[Fig. 1] False Acceptance and False Rejection Errors.



It can easily be shown that equation (1) is expressed as
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On the other hand, the probability of a false rejection error,

denoted by « , can similarly be derived as follows:
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To evaluate o and B, we first need to calculate the
bivariate normal probabilities. This article uses the well-
known numerical method developed by Drezner and
Wesolowsky (1990) for evaluating the bivariate normal
integrals. Readers are also referred to Drezner (1976) and
Mee and Owen (1983).

Screening procedures may be considered a class of
hypothesis testing to determine whether an outgoing item is
conforming or not. The general procedure in hypothesis
testing is to specify a value of the probability of type I error
« , and then to design a test procedure so that a small value
of the probability of type II error B is obtained. This may
formally be expressed as

Minimize S
subjectto a <a,
where o and g are given in equations (2) and (3),
respectively, and o, denotes the maximum allowabie
value of ¢ .
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3. ANUMERICAL EXAMPLE

To demonstrate -the proposed model, consider the
example of an optical scanning device illustrated in
Mader et al. (1999). The device uses a lamp to illuminate
the target and the important quality characteristic of the
lamp is the luminance measured in candelas per square
meter (cd/m?). The luminance for the lamps is normally
distributed with a mean of 35,200 cd/m? and a standard
deviation of 4,100 cd/m® (ie, g= 35200 and
o, =4,100). The upper and lower specification limits for
the luminance are 30,000 and 42,000 cd/m?, respectively,
and thus £=30,000 and U=42,000. Further, the variability
of a single measurement given the actual value of the
quality characteristic is o = 7746 cd/m’. It is a
common practice to design a hypothesis testing procedure
to minimize B while limiting the probability of type I
error at 5%, i.e., e, =0.05. The screening limits on
measured values can then be determined by solving the
optimization model in equation (4), which involves a
great deal of computational resources mainly due to the
evaluation of bivariate normal probabilities. In this
respect, an approximation method using the Gaussian
quadrature formulas based -on Legendre polynomials
(Drezner and Wesolosky, 1990) is implemented to
evaluate the bivariate normal integrals. A popular
mathematical software Matlab is used to find the optimal
solution by implementing a well-known numerical
optimization technique by Hooke and Jeeves (1966). The
optimal solution to the example problem is found to be
v'=30351.3 and w=41701.5 with ' =0.0742. The
contour piot of type II error probability B with respect
to v and w is depicted in Figure 2, where the probability
of type I error-is to be 0.05 along the dotted line. If
outgoing items are screened against the specification
limits, the type T and type II misclassification errors are
0.0310 and 0.1284, respectively, which is represented as
point B in Figure 2. Referring to point A in Figure 2, the
probability of a false acceptance error is significantly
reduced by 0.0542 (from 0.1284 to 0.0742) while the
probability of a false rejection error increases by 0.0190
(from 0.0310 to 0.0500).

4. CONCLUSIONS

One of the most important aspects in designing
screening procedures is implementing adequate screening
limits to ensure the outgoing product quality. Regardless
of how precise the measurement procedures are, however,
measurement errors are commonly incurred which may
lead to a wrong interpretation on product quality.



Nonconforming items may falsely be accepted, and
conforming items may also be misclassified as defectives.
It may thus be necessary to consider the impacts of
misclassification errors when designing screening
procedures. Along this line, this article investigates the
design of screening procedures based on the assessment of
inspection errors. Optimization models are proposed to
determine the screening limits on measured values so that
the impacts of inspection errors may be reduced.
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[Fig. 2] Contour plot of type II error probability A
with respect to v and w.

REFERENCES

1. Chandra, J. & Schall, S. (1988). The Use of Repeated
Measurements to Reduce the Effect of Measurement
Errors. IIE Transactions 20: 83-87.

2. Chen, S.-L. & Chung, K.-J. (1996).Selection of the
Optimal Precision Level and Target Value for a
Production Process: the Lower-Specification-Limit
Case. IIE Transactions 28: 979-985.

3. Drezner, Z. (1976). Computation of the Bivariate Normal
Integral. Mathematical Computation 32: 277-279.

4. Drezner, Z. & Wesolowsky, GO. (1990). On the
Computation of the Bivariate Normal Integral. Journal
of Statistical Computation and Simulation 35: 101-107.

5. Hooke, R. & Jeeves, T.A. (1966). Direct Search of
Numerical and Statistical Problems. Journal of ACM 8:
212-229.

6. Lin, C.Y,, Hong, C.L. & Lai, L.Y. (1997). Improvement
of a Dimensional Measurement Process Using Taguchi
Robust Designs. Quality Engineering 9: 561-573.

7. Mader, D.P,, Prins, J. & Lampe, R.E. (1999). The
Economic Impact of Measurement Error. Quality
Engineering 11: 563-574.

-368-

8. Mee, RW. & Owen, D.B. (1983). A Simple
Approximation for Bivariate Normal Probabilities.
Journal of Quality Technology 15: 72-75.

9. Tang, K. & Schneider, H. (1988). Selection of the
Optimal Inspection Precision Level for a Complete
Inspection Plan. Journal of Quality Technology 20:
153-156.

10. Tsai, P. (1988). Variable Gauge Repeatability and
Reproducibility Study Using the Analysis of Variance
Method. Quality Engineering 1: 107-115.

11. Vardeman, S.B. & VanVaikenburg, E.S. (1999). Two-
way Random-effects Analyses and Gauge R&R
Studies. Technometrics 41: 202-211.



	GOGGAD_2006_y2006m11a-0380.tif
	GOGGAD_2006_y2006m11a-0381.tif
	GOGGAD_2006_y2006m11a-0382.tif
	GOGGAD_2006_y2006m11a-0383.tif

