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Integrated inventory-distribution planning in a (1:N) supply chain system
with heterogeneous vehicles incorporated
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Abstract

This paper considers an integrated

inventory-distribution system with a fleet of

heterogeneous vehicles employed where a
single warehouse distributes a single type of
products to many spatially distributed retailers
to satisfy their dynamic demands and the
product is provided to the warehouse via
procurement ordering from any manufacturing
plant or market. The problem is formulated as
an Mixed Integer Programming with the
objective function of minimizing the sum of
inventory holding cost (at the warehouse and
retailers), and transportation cost and
procurement ordering cost at the warehouse,
subject to inventory-balancing constraints,
ordering constraints, vehicle capacity
constraints and transportation time constraints.
The problem 1is proven to be NP-hard.
Accordingly, a Lagrangean heuristic procedure
is derived and tested for its effectiveness
through computational experiments with some
numerical instances.

1. Introduction and Problem description

The proposed problem is associated with an
(1:MN) supply chain system which is composed of
one warehouse and = spatially distributed
retailers. In order to satisfy any given retailer
demands, the warehouse has to place orders for
some amount of the product from a higher
echelon, say a manufacturing plant or a supplier
(market). The warehouse employs a fleet of
heterogeneous vehicles{different loading
capacities) to distribute the product to multiple
retailers. Each vehicle is allowed to make round

trips between the warehouse and retailers. The
associated ordering planning and vehicle
scheduling are made for each period. The time
required for a round trip between the warehouse
and each retailer is assumed to be less than
each period. Each vehicle is allowed to make
several round trips to the same retailer or other
retailers in a single period if the total travel time
does not exceed the length of each period.
Demand is assumed to be known for the entire
planning horizon. Both the warehouse and
retailers can hold inventory and there is no limit
on the storage capacity for inventory. Each
demand can be delivered early but not late (i.e.
shortage is not allowed).

Transportation cost is composed of
distance-based cost and quantity-based cost.
The distance-based transportation cost is
incurred when a vehicle makes a round trip to a
retailer, in proportion to the associated distance
between the warehouse and the retailer, while
the quantity-based transportation cost can be
computed as the delivery quantity multiplied by
unit variable cost. The distance-based cost
depends on vehicles used for delivery, but the
quantity-based cost is independent of vehicles.
The fixed ordering cost at the warehouse is
independent of any amount ordered, but it may
differ period by period. The inventory holding
cost is charged according to inventory. quantities
at the end of each period. The unit holding cost
may also differ at the warehouse and each
retailer period by period.

- The associated parameters and variables are
listed as follows.
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Parameters

t  index for time periods (1,..., 7)

i ! index for vehicles (1,...,M)

j ¢ index for retailers (1,...,V) with O
representing the warehouse

cﬁ ! quantity~based transportation cost for
delivering a unit to retailer j in period ¢

Cgt * distance-based transportation cost of
vehicle 4 for a round trip between the
warehouse and retailer j in period ¢

hjt : per-unit inventory holding cost for
inventory at the end of period t at
retailer j

djt - demand quantity at retailer j during
period ¢

o, - fixed cost incurred at the warehouse for
the product to be ordered from a higher
echelon in period ¢

V. : loading capacity of vehicle 4

T transportation time between the
warehouse and retailer j

7  length of each period

Variables

Y;; - number of round trips made by vehicle ¢
to serve retailer 7 in period ¢

[jt * inventory level at retailer j in period ¢

Z;; * amount delivered to retailer § in period ¢

z; - 0-1 variable representing whether the
warehouse places an order for the
product in period ¢

g, : amount ordered at the warehouse in

period t

The integrated inventory~distribution planning
problem can be mathematically expressed as in
the following mathematical programming:

Problem P :
Zope = MmEEEcmym + e
EZth [+ Eotzt
subject to

[()t:]ot—l“*'Qt_szjt Vi 2

Ly=1I,  +x;—d; Vv j,t ©))
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(2) and (3) represent the inventory
constraints at the warehouse and

retailers, respectively. Constraint (4) enforces
binary variable z, to become 1 whenever the
warehouse places an order for the product from
the higher echelon. ./Wt is a very large positive
number. Constraint (5) ensures that the quantity
delivered to a retailer in a period does not
exceed the sum of the loading capacities of the

vehicles visiting the retailer.

Constraint (6)

ensures that the total travel time of each vehicle
during each period does not exceed the length of
each period.

2. Solution approach

Problem P is NP-hard, because it has the
general knapsack problem structure, so that a
heuristic algorithm is derived to get a good,

near-optimal
Lagrangean relaxation approach

solution. In this paper, the

is used to

develop the heuristic solution procedure for the
proposed mixed integer programming problem.

2.1 Lagrangean Relaxation

The original
dualizing
multipliers )\jt >

problem [P] is relaxed by
(5) with Lagrangean
The resulting relaxed

constraint

problem is L()\).

Problem L{)\):

Zy(\) = anzz Cijt —

]t yz_;t + Ezh]t 3t
+ Zg(cﬁ + )\ﬁ z; + gotzt
J

subject to
(2), (3), (4), (6), (1), (8), (9) and Ay 20 (10)

The

relaxed problem Z(\) can be

decomposed into two independent subproblems,
Ly(\) and L,(\).

Subproblem Z; (\):

= Min Ezt](cﬁ + X\ )z, + thhjtljt
7 J

+ Eotzt
t

subject to
(2), (3), (4), (8), (9) and (10)

Subproblem L, (\):

Z, (\) = MnEZ}Z(c{; -

I/i)‘jt )yijt

subject to
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(6), (7) and (10)

2.1.1 Solving Subproblem L, (\) with A given
Relaxing an integrality constraint (8) makes
the problem to become a simple linear
programming problem to solve optimally via the
simplex method. To obtain a good lower bound
for the original problem, the LP relaxed problem
of Subproblem L;(\) has to get tight by
- employing some valid inequalities. In the
proposed problem, backlogging is not allowed so
that the maximum ordering quantity at the
warehouse, ¢, can be determined up to the sum,
M,, of the overall net demands over the periods

from ¢ through T for all the retailers such that

M, = E 2

Proposition 1.
The f{ollowing inequalities are valid for

Subproblem L; (\).

S B

7 =
f0r1<k<l< T

Moreover, the relations f; =0 and z; =1

can be included as constraints, because the
initial inventory at the warehouse and retailers
is assumed to be zero. Therewith, an LP relaxed
problem of Subproblem Z, \), LPRL, (\), can

be expressed as follows.

Problem LPRL,()\):
)= anzt:(cﬁ‘*‘ Aj )y + Z;hﬁjﬁ
F J
+ Zotzt
?

Zypri, (A

subject to
Iy, :I()t~1+‘11_;xjt vVt
L, =[ﬁ_1+x~ ~d; Vit
(EEd]k)zt Vi

—tj

!
E.[j,k—l > tEL(E_dﬁ)(l — 2= 2,)
J t=k j
for1<k=<i< T
0<2 <1 vt

xjt"[jt’Qt =0 Vit

2.1.2 Solving Subproblem Z, ()

For any given A, Subproblem L2()\) can be
further decomposed into several single-period,
single-vehicle scheduling problems ZL{(\) for
Y i,t as follows.

Subproblem Lg'(\):

ZL-'L, (>\) = MinZ(cgt - I/i)‘jt)yijt
M
subject to
ZT yut -
yg,fe{071’2a } V]

In this paper, the integer knapsack problem is
solved by a dynamic programming algorithm,
referring to Nemhauser and Wolsey [27]. The
algorithm solves the problem optimally in the
complexity order O(NR), where N is the number
of retailers and R is the length of a period.

3.3 Converting of Infeasible Solutions
Procedure-FS 1 is executed to find a feasible
solution which is an upper bound for the original

problem P . The Procedure-FS 2 checks if any
further improvement can be made in vehicle
schedules so as to lead to reduction in the
distribution and inventory cost while maintaining
the feasibility of the solution.

Procedure-FS 1
Phase 1. (Increasing the number of trips)

Let z; be the solution values of Subproblem
LPRL,()\), and Yip =0 for all I j and ¢
Fort=1toT
Sort all the retailers in nonincreasing order of
their round trip times (7'])
Forj=1 to N, do,

Repeat if x ;> E Vi -
3

VA jt) such

Wk
T for ¢

Find i’ = argmini(cgt -
that ETJyZ]t -+ Tj <

Let y”t Y1

Phase 2, LFind a binary value of variable zt)

Let (zt,qt) be the optimal solution value of
Subproblem LPRL,()\), and Yijr Is the current

solution after Phase 1 is executed,
Fort=1toT,

For z—,= 1, find the sma//est t* such that

2(1—2L)OLS Z (ki]lhm)q_k, £ >t

ok E=t+1\I=t¢
Letzy=1 and z;, =0 fort<k<t.

Solve Problem (LP1).
Problem (LFPI1):

min Ezzczﬁ ytjf+ Ezcﬁx]t
+ Zzhjf it + EOrzt
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subject to

Step 2: Generate a lower bound and use it to

o < [ STufz i

K=t
= EViyijt Y j,t
By =1Ty-1+g— Z%t Vit
I] =1]t_1+$ th V],t
]t’IJtaQt =0 Y j,t

Procedure-FS 2 L
Let 2= {(i,j,)ly;,> 0,i€ L, jE J,tE T} where

1,72; Is the current solution obtained from Phase

update the current best lower bound.
2.1: Given A\* solve the Lagrangean Problem

L()\k) using the simplex method and the
DP algorithm (referring to Sections 3.1.1
and 3.1.2), and obtain the value for

ZL()\k) which is a lower bound for the
original problem P . If the solutions are
feasible to the original problem,
terminate and give ZL()\k) as the final
solution.

2.2: It Z,(A*)> LB, then let LB= Z,(\F)
and [ = 0. Otherwise, let [=1[+1.

1. Step 3: Generate a Lagrangean heuristic solution

Repeat if 2 # &
Find (3,5,t)" such that
- * D
(4,5,t) = argmax(i,jyt)eg(ciﬁ - Vi)\jt).
Let 2= Q\(Z)]vt) . .
Solve Problem (LP2) with z,(the current

solution from Phase 2).
If the objective value of Problem (LPZ2) is
smaller than the objective value of the

current solution, then let Y6500 Y00 1

, where Problem (LP2) is expressed as
Problem (LP2):

min Ezzcmym"‘ EZ%%
+ Zzh]t gt + Eotzt

and use it to update the current best
upper bound.

3.1: Generate a Lagrangean heuristic solution
by using Procedure-FS 1 and compute
the feasible solution value of Z,,, which
is an upper bound for the original

problem P
3.2 If k is a multiple of KH execute
Procedure-FS 2 and nd update the feasible

solution value of Z, .. Otherwise, go to

opt *
Step 3.3.
3.3 Ionpt< UB | then let UB= Zopt
B— L
3.4 If (KFE)X 100 < 1, terminate and

give UB as the final solution.

subject to Otherwise, go to Step 4.
Ty = ZVLJJ{‘ Ve Y j,t Step 4: If k> K or > L, terminate and give
v . . .
Lo=1I, ,+¢— ijt Vi t(c{gteaps 5t.he final solution. Otherwise, go
g < (kgt;djk)z_t vt ;rnedfzgl?fsttoepS;?tlon 3.2). Set k=k+1
xjt’[jt’qt =0 V.t

3.4 Lagrangean Heuristic Procedure

Procedure~LH 1.
Step 1: Initialize the Lagrangean multipliers and 2.
parameters as follows;
1.1: Set the improvement counter at 4&=0, the
iteration counter at ~0.
1.2: Set the Lagrangean multiplier \* =1,
3

1.3: Set the current best lower bound, LB,
to negative infinity and the current best

upper bound, UB , to positive infinity.
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4. Computational results
All the other parameters are generated by
referring to Kim and Kim [7] [8].

Demands in each time period (d) are

7t
generated from DU(100,500).
Loading capacities (VJ of small, medium and
large size vehicles are set at the largest

integers not greater than (EEdjtTj)/(T]V)
j 1

times 0.7, 0.85 and 1.0, respectively.

. Transportation time between the warehouse

and each retailer ('rj) is generated from

DU(0-2uy, 1), where p, = 7M/N.



4. Distance-based transportation cost (cgt) is
generated from  U(5u,,20p,), where
o= V.

5. Quantity-based transportation cost (c?) is

generated from U(5,10).
6. Per unit inventory holding costs at each
retailer (hjt) and the warehouse (hOt) are

U(5,10) and U(1,5),

generated from
respectively.
7. Ordering cost at the warehouse is generated

from U{us,10u3), where pg = 3(22dﬂ)/ T

Table 1 gives the average, mi]nintlum and
maximum percentage gaps of the Lagrangean
heuristic solutions and CPU times for each
problem set.
Table 1. Results of the computatfonal experiment
Percentage gap (%)b CPU time (s)
F| J | Min |Mean| Max | Min | Mean | Max
2050 333 | 3.76 | 459 | 91.3 | 114.1 | 129.0
20160| 3.24 | 3.76 | 4.18 | 162.1 | 206.9 | 228.6
20170] 3.10 | 3.41 |} 3.86 | 216.4 | 250.5 | 265.0
30170 3.14 | 4.02 | 5.68 | 202.5 | 227.1 | 294.7
301 80| 3.05 | 3.45 | 3.77 | 265.9 | 313.2 | 370.5
30190 3.07 | 3.58 | 493 | 482.2 | 547.3 | 618.1
40|90| 343 | 4.17 | 547 | 328.9 | 361.7 | 382.6
40(110[ 2.93 | 3.40 | 4.51 | 724.1 |1138.7|1548.1
401130 3.24 | 3.61 | 4.24 [2276.212502.7|2848.4
501110 3.11 | 4.07 | 5.73 | 497.7 | 568.0 | 784.7
501301 2.85 | 3.23 | 3.62 {1029.7[1731.9}2212.6
501150 3.12 | 3.43 | 4.50 [2842.6|3324.4|3661.3

“ I and J denote the number of vehicles and the number of
retailers, respectively.

b Percentage gap = 100X (upper bound lower bound)/lower
bound.

5. Conclusion

This paper deals with an integrated
inventory-distribution problem with a fleet of
heterogeneous vehicles employed to distribute a
single type of product from a single warehouse
to spatially distributed retailers to satisfy their
dynamic deterministic demands.

The problem is formulated as an Mixed
Integer Programming where the objective
function consists of inventory holding cost,
transportation cost and ordering cost at the
warehouse, subject to inventory-balancing
constraints, ordering related constraints, vehicle
capacity constraints and transportation time
constraints.

As a solution approach, the Lagrangean
relaxation method is adapted to derive a

Lagrangean heuristic procedure. To solve the
proposed problem more efficiently, some valid
inequalities are proposed. In order to evaluate
the effectiveness and efficiency of the proposed
algorithm, computational experiments are
performed with some numerical instances that
are randomly generated. The experiment results
show that the proposed algorithm solves the
problem within a reasonable time and give good
solutions at 3.66% gap in average.
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