Gene Set and Pathway Analysis of Microarray Data

  • 발행 : 2006.02.01

초록

최근의 microarray 기술의 발달로 인해 점점 더 많은 양의 mRNA 발현 데이터가 쌓여 가고 있다. 이제는 데이터를 만드는 단계보다는 데이터로부터 중요한 생물학적 의미를 끌어내는 것이 더욱 중요한 일이 되었다. micorarray 기술이 처음 도입된 이후로, 많은 앨고리즘과 소프트웨어가 개발되어, 실험자들이 microarray 데이터로부터 생물학적 의미를 끌어내는 작업을 도와주어 왔다. 그런데, 이전의 데이터 마이닝 방법들은 거의 예외 없이 전체 데이터로부터 선택된 몇 십, 몇 백 개의 유전자 리스트로부터 출발한다. 그런데, 이러한 방법 (over-representation analysis, ORA로 줄임)은 몇 가지 한계를 가지고 있어서, 최근에는 전체 데이터로부터 의미 있는 유전자 세트 (gene set)를 찾아내는 방법들이 도입되었다. 본 세미나는 이런 방법들, 줄여서 gene set analysis라 함, 에 사용되는 앨고리즘들과 소프트웨어들을 비교, 검토하고자 한다.

키워드