P-type and N-type $Bi_2Te_3/PbTe$ Functional Gradient Materials for Thermoelectric Power Generation

  • Lee, Kwang-Yong (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae-Sung (Department of Materials Science and Engineering, Hongik University)
  • Published : 2006.09.24

Abstract

The p-type $(Bi_{0.2}Sb_{0.8})_2Te_3/(Pb_{0.7}Sn_{0.3})$Te functional gradient material (FGM) was fabricated by hot-pressing the mechanically alloyed $(Bi_{0.2}Sb_{0.8})_2Te_3$ and the 0.5 at% $Na_2Te-doped$ $(Pb_{0.7}Sn_{0.3})Te$ powders. Also, the n-type $Bi_2(Te_{0.9}Se_{0.1})_3/PbTe$ FGM was processed by hot-pressing the mechanically alloyed $Bi_2(Te_{0.9}Se_{0.1})_3$ and the 0.3 wt% Bi-doped PbTe powders. With ${\Delta}T$ larger than $300^{\circ}C$, the p-type $(Bi_{0.2}Sb_{0.8})_2Te_3/(Pb_{0.7}Sn_{0.3})Te$ FGM exhibited larger thermoelectric output power than those of the $(Bi_{0.2}Sb_{0.8})_2Te_3$ and the 0.5 at% $Na_2Te-doped$ $(Pb_{0.7}Sn_{0.3})Te$ alloys. For the n-type $Bi_2(Te_{0.9}Se_{0.1})_3/PbTe$ FGM, the thermoelectric output power superior to those of the $Bi_2(Te_{0.9}Se_{0.1})_3$ and the 0.3 wt% Bi-doped PbTe was predicted at ${\Delta}T$ larger than $300^{\circ}C$.

Keywords