

Effect of Ribbon Thickness on the Soft Magnetic Properties of Powder Cores

Byoung-Gi Moon¹, Keun Yong Sohn¹, Won-Wook Park², Sang-Kyun Kwon³, Yong-Seol Song³ and Taek-Dong Lee⁴

¹Advanced Materials Research Division, Korea Institute of Machinery and Materials ²School of Nano Engineering, Inje University ³Amosense Co.

⁴Dept. of Materials Science and Engineering, Korea Advanced Institute of Science and Technology

Magnetic permeability of a material is known to depend on the size and shape of materials, and the effective permeability can be computed from the intrinsic permeability and demagnetization factor. Inductor cores produced by a soft-magnetic powder usually have low permeability compared to the wound cores. Our previous studies showed that the coercivity of powder was strongly dependent on the particle size; the coercivity of nanocrystalline alloy flakes became larger with decreasing their sizes. In this study, the influence of ribbon thickness on the permeability and coercivity has been investigated. Fe₇₃Si₁₆B₇Nb₃Cu₁ amorphous ribbons were fabricated via a planar flow casting technique with a various thickness ranging from 15 to 30μ m, and then ground by a hammer mill after annealing at 420° C for 1 hour in an argon atmosphere. The powders were classified to $-200 \sim +270$ mesh ($53 \sim 75 \mu$ m) and $-325 \sim 400$ mesh ($38 \sim 45 \mu$ m) particles. They were mixed with 3wt% of solder glass and 1wt% of Zn-stearate using a V-corn mixer. Consolidation of powder was carried out using a floating-die press to a toroidal shape. The consolidates were encapsulated in aluminum bobbins followed by a nanocrystallization annealing at 550° C for 1 hour in air. The initial permeability and core loss of the consolidates were measured with an impedance analyzer and a B-H analyzer. The intrinsic coercivity of the powder was evaluated using a vibrating sample magnetometer (VSM). The effect of the shape factor of particles on magnetic behavior will be discussed in terms of the original thickness and microstructural changes of the ribbon.