

## Macro-interface Characteristics of Bimodal-structured Al Materials Produced by Ball-milling

Byung Heum Song<sup>1</sup>, Han Gyung Cho<sup>2</sup>, Jin-Chun Kim<sup>3</sup>, Seong-Hee Lee<sup>4</sup> and Si-Young Chang<sup>5</sup>

<sup>1</sup> Department of Aeronautical Science & Flight Operation, Hankuk Aviation University, Korea
<sup>2</sup> Graduate student, Hankuk Aviation University, Korea
<sup>3</sup> Materials Technology Department, Korea Institute of Machinery & Materials, Korea
<sup>4</sup> Division of Advanced Materials Science and Engineering, Mokpo National University, Korea
<sup>5</sup> Department of Materials Engineering, Hankuk Aviation University, Korea

## Abstract

Al-5wt%Mg powders mixture, Al-5wt%Mg/SiCp mixture and Al-5wt%Mg/SiCp mixture were prepared by ball-milling for 30 h at the ratio of ball and powder, 30:1, and subsequent compacting under a pressure of 350MPa. The bimodal-structured materials were obtained by bonding the Al-5wt%Mg powders mixture and composite mixtures using heat treatment at temperatures ranging from 973K to 1173K for 5h. The macro-interface characteristics in the bimodal-structured Al materials were evaluated based on not only elastic modulus and hardness by nano-indention test but also fracture toughness and bending strength by impact test and bending test.