

## 

Dong-Wook Lee, Jae-Hwan Pee, Ung-Su Kim and Eui-Seok Choi

Icheon Institute, Korea Institute of Ceramic Engineering and Technology, Seoul 153-801, Korea

## **Abstract**

 $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powders for some pigments are commercially produced by either forced hydrothermal or calcinations of FeSO<sub>4</sub>, FeCl<sub>3</sub>, and Fe(NO<sub>3</sub>)<sub>3</sub>. Many  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powders are available for use as red pigment for Korean porcelain enamel. Most of the commercial  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powders for red pigments are composed of elongated crystals, 80-230nm long and 40-100nm thick and these crystals are strongly aggregated. The mean size and shape of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powders have strong influence on the visible light absorption spectrum, infrared absorption spectrum. Especially, the tone of the red color is strongly influenced by the aggregation, size, morphology, and the amount of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powders. However, the effects of the size and morphology of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powders on the color or red pigment on Korean porcelain have not been investigated. The intent of this work is to prepare  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powders with controlled shaped and size via hydrothermal synthesis and to determine the optical properties as a function of size and shape. A hydrothermal synthesis has been developed to prepare  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> powders using iron nitrate nine hydrate and NH<sub>4</sub>OH as the starting materials. The size control is performed by regulating the excess concentration of ferric ions or reaction time during the nucleation stage.