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Introduction

Biaxial elongation experiments provide uz a lot of information on
an elastic potential of polymer networls. The slastic potential is
usually called the strain energy function #, and the stress-strain
relation can be caleulated by using derivatives of B So far many
studies, both by experiment and theory, have been made to establish
the frameworls of ¥, but littls iz known on the functional form of #
even at present [1]. The clagsical theory of rubber elasticity, built up
on the basis of the statistical mechanics, has shown that the elasticity
of rubbers has an entropic origin. The theory often uses the
assurmption that mbbers are incompressible to obtain the stress-strain
relation. The applicability of this assurmption is, of course, supported
by experiments but has no theoretical basiz. Mozt of recent studies
tend to refine the entropic nature of the elasticity; thus, the izsue on
incompressibility rerrming still unsolved. The incompressibility st
be closely related to the fact that mibbers have a finite, £ 2, non-zero,
volurne at rest, which cannot be described by the Gaussian chains uzed
in the statistical theory. Phenomenclogical approach to ¥ also has a
long history. Becanse mbbers can be stretched to large strains, the
finite deformation theory iz used to describe the stress-strain relation
of the materials. In this theory, B is usually regarded az a function of
k. & oand &, with 7 being the ith invariant of the deformmation tensor.
The finite deformation theory itzelf, however, cannot determine the
functional form of B, although the theory may impose several
requirements to be satisfied on B It has been reported that the
derivatives of W with respect to the invariants show strange behavior
ab small straing and the behavior cannot be explained by any of the
current theoretical models. In this paper we focus on the anomalons
behavior of the derivatives at small straing,

Models for Strain Energy Function
Until now varions models are presented for ¥, and among them
the most general expreszion is known to be the following form [1].
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Here, Ty i3 the constant and the parameters for the sumrmation over
m, and » should be positive integers. The invariants (4, 5 and &) are
respectively defined by
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where, A;iz the principal stretch ratio in the th (1 =1, 2, 3 direction.

When materials can be assumed to be incompressible, & = 1, Equation
(1) iz reduced to
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One of the special forme of the above equation is
W =C\(1,-3) (3)

This is identical to the expression obtained fromthe classical theory of
mibber elasticity (a Ganssian model) if &1 = &l = G/2, with & being
the shear modulug. Another sinplified form shown below, lmown as
the Mooney rmodel, is often used to analyze stress-strain behavior of
real elagtomers,

W =Cl,-3)+C,(1,-3)
Here, Cl = Cl() and CQ = C()l.

There exist more cormrplicated forms: for exarrple, the following
expression i proposed for # by Beda [2].

A B
W= Zp;a—p(fl—s)“r + Zglﬂ—g(fz —3)

Hera, 4, and B, are constants, and the exponsnts (& and A are
positive and allowed to be non-integers.
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Derivatives of the Strain Energy Function
According to the Mooney model, the derivatives of B with
respect to % are given as follows.
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This set of derivatives also include the expression for the Gaussian
rmodel as a special cage of O = G2 and =0,
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Flgure 1. 8879% vs. I for an isoprene mbber, Upper; 89704
middle; 88785 bottorn, SFYEL.

Figure 1 shows OW/OL plotted against ;i under pure shear
deformation for an isoprene rubber (IR). The original data forthe plots
wara those reported by Kawabata et al, and we reanalyzed the data as
a conpressible raterial using the reported Polszon ratio [3,4].
According to the simple model (for example, Equation (6)), the
derivatives not only with respect to /1 but also & are independent of 4.
However, the curve of 88787 in the figure shows an upturn at small
straing (1 e, 5 = 3), OW/OS showing a downturn. The curve of SW/8L
also behaves in a complicated manner. As stated above, the simple
rmodel cannot explain the experimental data near & = 3. We may call
the upturn and downturn, together with the conplicated change for the
oWYeL curve, anomalous behavior of the derivatives, although the
behavior was not observed in the pioneering work rmade by Rivlin and
Sannders [1]. At present it iz well known that the anomalous behavior
iz widely observed for other networl materials than IR: another
example will be shown later. Beda tried to explain the anommlous
behavior baged on hiz model (Equation (5)). At very small straing, B
for inconpresaible materials can be approximated by using & (< 1)
and A (= 1) as [2]

W = 203 4,0, -3+ 2,3 9
o A
This gives the derivatives of
oW 4 oW B
_ =+ A ., — = s S (8)
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These can describe the upturn and downturn behavior as strains
approach to zero if 4; > 0 and 7, = 0. However, the zero-strain state is
becormes a singularity; in this sense, Equation (7) is improper for ¥

Limiting Values of the Derivatives at Zero-Strain Limit

Az briefly reviewed in the previons section, real elastomers show
the anomalous behavior in the plots of B8 va. k at zero-strain lirmit,
and no models exist capable to explain the strange behavior at present.
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Even in thiz situation, the limiting values of the derivatives at zero-
gtrain limit can be evalnated if we asmame that B in the finite
deformation theory should coincide with that in the linear elasticity
theory at the zero-strain lirnit.

Looking bacl to the linear elasticity theory, ¥ for compressible
materials can be uniquely written with bulle modulus & and & as

W= [£+£le2 -2GJ, )
23

if we uze the following three imvariants of the infinitesimal strain
tenzor,

J=A4+A4,+4-3
Ty = Gy =D, =D+, = Dk, ~ D+ (A - 1, -1)
Jy =~ 1A, - 14, -1)

Ag Equation (9) leads to the limiting values at zero-strain of
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and then [ iz related to 7 az
I =J2+2J -2J,+3
I,=0J2 4T3 4200, - 20,0, + 41, —6J,+3
L=0+J,+J,+J.)
we have for the limiting values of the derivatives with respect to &
[4,6]
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The arrows a, b and o in Figure 1 indicate the calculated limiting
values with respect to [, J, and 7, respectively. Here, & used was the
reported value for the isoprene rubber. The predicted wvalues are in
good agreement with the experimental ones.
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Figure 2. OW/87; va. 1) for abutadiene rubber. Upper; SW/21:
middle; 8F78L: bottorm; SWOE,
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Figure 2 shows similar plots for a butadiene rubber (BR) obtained
under pure shear deformation [5,6]. The original data were reported by
Fulahori et al [5]. The anorralous behavior iz alzo obaarved for BE.
The limiting values caleulated by Equation (10) are indicated by the
arrows and the amows have the same as those in Figure 1. The
agresiment between experiment and theory is also fairly good for BR.
Similar results have been obtained for other types of mbbers.

Conclusions

Eeal elastomers show the anomalous behavier in the &
dependence curves of the derivatives of ¥ with respect to & at small
straing, The limiting values of the derivatives were evaluated by a
sinple model based on the assaumption that B in the large
deforrmtions should coincide with that in the linear elasticity theory.
The calculated values were in good agreerment with the experimental
ones for real elastomers,
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