Fuzzy Weakly r-Semicontinuous Maps 퍼지 weakly r-반연속 사상

이석종1, 김진태2

 충북대학교 자연과학대학 수학과 sjl@chungbuk.ac.kr
 충북대학교 자연과학대학 수학과 kjtmath@hanmail.net

Abstract

By generalizing the definition of B. S. Zhong, we introduce the concept of fuzzy weakly r-semicontinuous maps in fuzzy topology of Chattopadhyay. Then the concept introduced by B. S. Zhong become special case of our definition. Also, we show that fuzzy weakly r-semicontinuity and fuzzy weakly r-continuity are independent notions.

Keywords: fuzzy weakly r-semicontinuous

1. Introduction

Chang [1] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. B. S. Zhong [7] introduced the concept of fuzzy weakly semicontinuous maps in Chang's fuzzy topology. Chattopadhyay and his colleagues [2, 3] introduced another definition of fuzzy topology as a generalization of Chang's fuzzy topology. By generalizing the definition of B. S. Zhong, we introduce the concept of fuzzy weakly *r*-semicontinuous maps in fuzzy topology of Chattopadhyay. Then the concept introduced by B. S. Zhong become special case of our definition. Also, we show that fuzzy weakly *r*-semicontinuity and fuzzy weakly *r*-continuity are independent notions.

2. Preliminaries

We will denote the unit interval [0,1] of the real line by I and $I_0 = (0,1]$. A member μ of I^X is called a fuzzy set in X. For any $\mu \in I^X$, μ^c denotes the complement $1 - \mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_i \in T$ for each i, then $\bigvee \mu_i \in T$.

The pair (X,T) is called a *Chang's fuzzy topological space*.

A fuzzy topology on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$.
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$.
- (3) $\mathcal{T}(\bigvee \mu_i) \ge \bigwedge \mathcal{T}(\mu_i)$.

The pair (X, \mathcal{T}) is called a fuzzy topological space. For each $\alpha \in (0, 1]$, a fuzzy point x_{α} is a fuzzy set in X defined by

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

In this case, x and α are called the *support* and the *value* of x_{α} , respectively. A fuzzy point x_{α} is said to *belong* to a fuzzy set μ in X, denoted by $x_{\alpha} \in \mu$, if $\alpha \leq \mu(x)$.

Definition 2.1. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X,\mathcal{T}) and $r\in I_0$. Then μ is said to be

- (1) fuzzy r-open if $T(\mu) \geq r$,
- (2) fuzzy r-closed if $T(\mu^c) \geq r$.

Definition 2.2. ([5, 6]) Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \le \mu \le \operatorname{cl}(\rho, r)$,
- (2) fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such that $int(\rho, r) \le \mu \le \rho$,
- (3) fuzzy r-regular open if $int(cl(\mu, r), r) = \mu$,
- (4) fuzzy r-regular closed if $cl(int(\mu, r), r) = \mu$.

Theorem 2.3. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then the following statements are equivalent:

- (1) μ is a fuzzy r-semiopen set.
- (2) μ^c is a fuzzy r-semiclosed set.
- (3) $\operatorname{cl}(\operatorname{int}(\mu, r), r) \geq \mu$.
- (4) $\operatorname{int}(\operatorname{cl}(\mu^c, r), r) \leq \mu^c$.

Definition 2.4. ([5]) Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the *fuzzy r-semiclosure* is defined by

$$\operatorname{scl}(\mu, r) = \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \ \rho \text{ is fuzzy } r\text{-semiclosed} \},$$

and the fuzzy r-semiinterior is defined by

$$\operatorname{sint}(\mu, r) = \bigvee \{ \rho \in I^X \mid \mu \ge \rho, \\ \rho \text{ is fuzzy } r\text{-semiopen} \}.$$

Obviously $\mathrm{scl}(\mu,r)$ is the smallest fuzzy r-semiclosed set which contains μ and $\mathrm{sint}(\mu,r)$ is the greatest fuzzy r-semiopen set which is contained in μ . Also, $\mathrm{scl}(\mu,r)=\mu$ for any fuzzy r-semiclosed set μ and $\mathrm{sint}(\mu,r)=\mu$ for any fuzzy r-semiopen set μ . Moreover, we have

$$\operatorname{int}(\mu, r) \leq \operatorname{sint}(\mu, r) \leq \mu \leq \operatorname{scl}(\mu, r) \leq \operatorname{cl}(\mu, r).$$

Also, we have the following results:

- (1) $\operatorname{scl}(\tilde{0},r) = \tilde{0}, \operatorname{scl}(\tilde{1},r) = \tilde{1}, \operatorname{sint}(\tilde{0},r) = \tilde{0}, \operatorname{sint}(\tilde{1},r) = \tilde{1}.$
- (2) $\operatorname{scl}(\mu, r) \ge \mu$, $\operatorname{sint}(\mu, r) \le \mu$.
- (3) $\operatorname{scl}(\mu \vee \rho, r) \geq \operatorname{scl}(\mu, r) \vee \operatorname{scl}(\rho, r)$, $\operatorname{sint}(\mu \wedge \rho, r) \leq \operatorname{sint}(\mu, r) \wedge \operatorname{sint}(\rho, r)$.
- (4) $\operatorname{scl}(\operatorname{scl}(\mu, r), r) = \operatorname{scl}(\mu, r), \operatorname{sint}(\operatorname{sint}(\mu, r), r) = \operatorname{sint}(\mu, r).$

Theorem 2.5. ([4]) For a fuzzy set μ in a fuzzy topological space X and $r \in I_0$, we have :

- (1) $\operatorname{sint}(\mu, r)^c = \operatorname{scl}(\mu^c, r)$.
- (2) $\operatorname{scl}(\mu, r)^c = \operatorname{sint}(\mu^c, r)$.

Definition 2.6. ([4, 5, 6]) Let $f:(X,T) \to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then f is called

- (1) a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set in X for each fuzzy r-open set μ in Y,
- (2) a fuzzy r-semicontinuous map if $f^{-1}(\mu)$ is a fuzzy r-semiopen set in X for each fuzzy r-open set μ in Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-semiclosed set in X for each fuzzy r-closed set μ in Y,
- (3) a fuzzy almost r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set in X for each fuzzy r-regular open set μ in Y,
- (4) a fuzzy weakly r-continuous map if $f^{-1}(\mu) \le \inf(f^{-1}(\operatorname{cl}(\mu,r)),r)$ for each fuzzy r-open set μ in Y.
- (5) a fuzzy r-irresolute map if $f^{-1}(\mu)$ is a fuzzy r-semiopen set in X for each fuzzy r-semiopen set μ in Y.

3. Fuzzy weakly r-semicontinuous maps

We define the notion of fuzzy weakly r-semicontinuous maps, and investigate some of their properties.

Definition 3.1. Let $f:(X,T) \to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then f is called a fuzzy weakly r-semicontinuous map if $f^{-1}(\mu) \leq \sin(f^{-1}(\operatorname{scl}(\mu,r)),r)$ for each fuzzy r-open set μ in Y.

Remark 3.2. It is obvious that a fuzzy r-semicontinuous map is also a fuzzy weakly r-semicontinuous map for each $r \in I_0$. But the converse does not hold as in the following example.

Example 3.3. Let $X = \{x, y, z\}$ and μ_1 and μ_2 be fuzzy sets in X defined as

$$\mu_1(x) = \frac{1}{3}, \ \mu_1(y) = \frac{1}{3}, \ \mu_1(z) = \frac{1}{2};$$

and

$$\mu_2(x) = \frac{1}{2}, \ \mu_2(y) = \frac{1}{2}, \ \mu_2(z) = \frac{1}{2}.$$

Define $\mathcal{T}_1: I^X \to I$ and $\mathcal{T}_2: I^X \to I$ by

$$\mathcal{T}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_2, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$T_2(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \ \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$

Then \mathcal{T}_1 and \mathcal{T}_2 are fuzzy topologies on X. Consider the map $f:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ defined by f(x)=x for each $x\in X$. Thus f is fuzzy weakly $\frac{1}{2}$ -semicontinuous map. But $f^{-1}(\mu_1)=\mu_1$ is not fuzzy $\frac{1}{2}$ -semiopen in (X,\mathcal{T}_1) and hence f is not a fuzzy $\frac{1}{2}$ -semicontinuous map.

Theorem 3.4. Let $f:(X,T) \to (Y,\mathcal{U})$ be a fuzzy almost r-continuous map. Then f is also a fuzzy weakly r-semicontinuous map.

That the converse of Theorem 3.4 need not be true is shown by the following example.

Example 3.5. Let X = I and μ_1 and μ_2 be fuzzy sets in X defined as

$$\mu_1(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2}, \\ 2x - 1 & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

and

$$\mu_2(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{4}, \\ -4x + 2 & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ 0 & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Define $\mathcal{T}: I^X \to I$ by

$$\mathcal{T}(\mu) = egin{cases} 1 & ext{if } \mu = \tilde{0}, \tilde{1}, \ rac{1}{2} & ext{if } \mu = \mu_1, \ \mu_2, \ \mu_1 \lor \mu_2, \ 0 & ext{otherwise.} \end{cases}$$

Then T is a fuzzy topology on X. Let $f:(X,T) \to (X,T)$ be defined by $f(x) = \frac{1}{2}x$. It is easy to see that $f^{-1}(\tilde{0}) = \tilde{0}$, $f^{-1}(\tilde{1}) = \tilde{1}$, $f^{-1}(\mu_1) = \tilde{0}$ and $f^{-1}(\mu_2) = f^{-1}(\mu_1 \vee \mu_2) = \mu_1^c$. Since $\operatorname{cl}(\mu_2,\frac{1}{2}) = \mu_1^c$, μ_1^c is a fuzzy $\frac{1}{2}$ -semiopen set and thus f is a fuzzy $\frac{1}{2}$ -semicontinuous map. Hence f is a fuzzy weakly $\frac{1}{2}$ -semicontinuous map. Note that $\operatorname{int}(\operatorname{cl}(\mu_2,\frac{1}{2}),\frac{1}{2}) = \mu_2$. Thus μ_2 is a fuzzy $\frac{1}{2}$ -regular open set in Y. But $f^{-1}(\mu_2) = \mu_1^c$ is not fuzzy $\frac{1}{2}$ -open. Hence f is not a fuzzy almost $\frac{1}{2}$ -continuous map.

Remark 3.6. That a fuzzy weakly r-semicontinuous map need not be a fuzzy weakly r-continuous map and a fuzzy weakly r-continuous map need not be a fuzzy weakly r-semicontinuous map is shown in the following examples.

Example 3.7. A fuzzy weakly r-semicontinuous map need not be a fuzzy weakly r-continuous map.

Let $X=\{x,y,z\}$ and $\mu_1,\,\mu_2$ and μ_3 be fuzzy sets in X defined as

$$\mu_1(x) = \frac{3}{10}, \ \mu_1(y) = \frac{1}{10}, \ \mu_1(z) = \frac{1}{10};$$
 $\mu_2(x) = \frac{1}{2}, \ \mu_2(y) = \frac{1}{2}, \ \mu_2(z) = \frac{1}{2};$

and

$$\mu_3(x) = \frac{1}{5}, \ \mu_3(y) = \frac{1}{10}, \ \mu_3(z) = 0.$$

Define $\mathcal{T}_1:I^X\to I$ and $\mathcal{T}_2:I^X\to I$ by

$$\mathcal{T}_1(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_3, \\ 0 & \text{otherwise;} \end{cases}$$

and

$$T_2(\mu) = egin{cases} 1 & ext{if } \mu = ilde{0}, ilde{1}, \ rac{1}{2} & ext{if } \mu = \mu_1, \ \mu_2, \ 0 & ext{otherwise}. \end{cases}$$

Then \mathcal{T}_1 and \mathcal{T}_2 are fuzzy topologies on X. Consider the map $f:(X,\mathcal{T}_1)\to (X,\mathcal{T}_2)$ defined by f(x)=x for each $x\in X$. Then f is a fuzzy weakly $\frac{1}{2}$ -semicontinuous map. f is not a fuzzy weakly $\frac{1}{2}$ -continuous map.

Example 3.8. A fuzzy weakly *r*-continuous map need not be a fuzzy weakly *r*-semicontinuous map.

From the above two examples, we have the following result.

Theorem 3.9. Fuzzy weakly r-semicontinuous maps and fuzzy weakly r-continuous maps are independent notions.

From the above definitions and theorems one may easily verify the following implications.

Theorem 3.10. Let $f:(X,T)\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy weakly r-semicontinuous map.
- (2) $\operatorname{scl}(f^{-1}(\operatorname{sint}(\mu, r)), r) \leq f^{-1}(\mu)$ for each fuzzy r-closed set μ in Y.
- (3) $f^{-1}(\operatorname{int}(\rho, r)) \leq \operatorname{sint}(f^{-1}(\operatorname{scl}(\rho, r)), r)$ for each fuzzy set ρ in Y.
- (4) $\operatorname{scl}(f^{-1}(\operatorname{sint}(\rho, r)), r) \leq f^{-1}(\operatorname{cl}(\rho, r))$ for each fuzzy set ρ in Y.

Definition 3.11. Let $f:(X,T) \to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r \in I_0$. Then f is said to be fuzzy weakly r-semicontinuous at a fuzzy point x_α in X if for each fuzzy r-open set μ in Y and $f(x_\alpha) \leq \mu$, there exists a fuzzy r-semiopen set ρ in X such that $x_\alpha \in \rho$ and $f(\rho) \leq \operatorname{scl}(\mu, r)$.

Theorem 3.12. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r\in I_0$. Then f is fuzzy weakly r-semicontinuous if and only if f is fuzzy weakly r-semicontinuous for each fuzzy point x_{α} in X.

Let (X, \mathcal{T}) be a fuzzy topological space. For an r-cut $\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \geq r \}$, it is obvious that (X, \mathcal{T}_r) is a Chang's fuzzy topological space for all $r \in I_0$.

Let (X,T) be a Chang's fuzzy topological space and $r\in I_0$. Recall [2] that a fuzzy topology $T^r:I^X\to I$ is defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu = T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 3.13. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy topological space Y and $r\in I_0$. Then f is fuzzy weakly r-semicontinuous if and only if $f:(X,\mathcal{T}_r)\to (Y,\mathcal{U}_r)$ is fuzzy weakly semicontinuous.

Theorem 3.14. Let $f:(X,T) \to (Y,U)$ be a map from a Chang's fuzzy topological space X to a Chang's fuzzy topological space Y and $r \in I_0$. Then f is fuzzy weakly semicontinuous if and only if $f:(X,T^r) \to (Y,U^r)$ is fuzzy weakly r-semicontinuous.

Remark 3.15. By the above two theorems, we know that the concept of a fuzzy weakly r-semicontinuous map is a generalization of the concept of a fuzzy weakly semicontinuous map.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [2] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness: Fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237–242.
- [3] R. N. Hazra, S. K. Samanta, and K. C. Chattopadhyay, *Fuzzy topology redefined*, Fuzzy Sets and Systems **45** (1992), 79–82.
- [4] E. P. Lee, Various kinds of continuity in fuzzy topological spaces, Ph.D. thesis, Chungbuk National University, 1998.
- [5] S. J. Lee and E. P. Lee, Fuzzy r-continuous and fuzzy r-semicontinuous maps, Int. J. of Math. and Math. Sci. 27 (2001), no. 1, 53–63.
- [6] _____, Fuzzy r-regular open sets and fuzzy almost r-continuous maps, Bull. Korean Math. Soc. **39** (2002), no. 3, 441–453.
- [7] B. S. Zhong, Fuzzy weak semicontinuity, Fuzzy Sets and Systems 47 (1992), 93–98.