200608 % A B 783 71 L E=FF Vol. 33, No. 2(A)

FEHEANH B2 xo] fho]o] a3 A4t A3 F3E d8F

LIRS R I B R -
B2HRI) Y BARANE AARATF

T HAD

{swbae*, kychwa}@jupiter.kaist.ac.kx
ERPERELEE LT
jhoonepufs.ac.kr
Improved Algorithm for Constructing Euclidean City Voronoi Diagrams
Sang Won Bae'*, Jae-Hoon Kim?, Kyung-Yong Chwa'
'Div. of Computer Science, Dept. of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology

?Division of Computer Engineering, Pusan University of Foreign Studies

Q
.

[=)3
b |

This paper presents an improved algorithm for constructing the city Voronoi diagram under the Euclidean metric given a transportation
network consisting of roads having a constant number of speeds and orientations. The algorithm applies the continuous Dijkstra

paradigm and its efficiency follows from new geometric insights that are first observed in this paper.

1 Introduction

The city Voronoi diagram represents a generalized Voronoi dia-
gram in a modemn city where several transportation networks such
as bus networks, railroads, subway, or taxi systems are built and
thus people can use them for faster movement.

In our sense, a transportation network models such a real trans-
portation network. A transportation network is defined as a plane
graph and each edge is called a road. We assume that along each
road of the network, one moves at a certain fixed speed that is faster
than out of the network, and he/she can access or leave the road at
any point on it. In this situation, shortest (travel time) paths using
the given network are of considerable interest, and so are Voronoi
diagrams when we are given a set of equally attractive facilities.
We thus address these proximity problems in the presence of roads.

Aichholzer et al. [1] first proposed the term, “the city Voronoi di-
agram”; in their results, they considered shortest paths using given
roads under the L; metric and the induced metric by the given
roads, called the city metric. The Voronoi diagram under such a
city metric is called the city Voronoi diagram. For the city Voronoi
diagram under the L metric, there has been constant effort to find
an optimal algorithm [1,2, 5}, and at last Bae et at. achieved it [4].

In this paper, however, we particularly consider the Euclidean

505

metric, and investigate roads, shortest paths implied by the given
roads, and the city Voronoi diagram under the Euclidean metric.
The Euclidean city Voronoi diagram first appears in a Spanish pa-
per by Hurtado et al. [6], although they did not use the term “city”.
Recently, Bae and Chwa {3] extends their results to more general
cases but the solutions are far from the optimal ones.

This paper presents an improved algorithm that builds a Eu-
clidean city Voronoi diagram and also a shortest path map (here-
after, we may call it SPM) in the presence of a transportation net-
work which in particular consists of roads classified into a constant
number of speed-orientation pairs. Indeed, we first obtain an algo-
rithm for building a SPM for a single source by applying the con-
tinuous Dijkstra paradigm, and then extend to that for the Voronoi
diagram. The following is our main result.

Theorem 1. A shortest path map under the city metric induced by
the Euclidean metric and n roads of k speed-orientation pairs can
be constructed in O(k>/*n3/?+¢) time and O(kn) space. Also,
the Euclidean city Voronoi diagram for m sites can be computed
in O(k3/2(n 4+ m)3/2+¢) time and O(k%(n + m)) space.

If we regard k as a constant, for every m € o(n?), this improves
the previously best known algorithms by Bae and Chwa [3], where
two different algorithms are presented; O(nm + n? + mlogm)
time with O(n(m + n)) space and O{nm logm + n?log n) time
with O(m + n) space.

2006 = HEAH B35 3 e gedE=E Vol 33, No. 2(A)

As mentioned above, the city Voronoi diagram can be computed
by using the algorithm for the SPM. Thus, we shall focus on the
algorithm for constructing a SPM for a given source s in the body
of this paper. In Section 2, we introduce some preliminaries related
to our work and, in Section 3, we briefly describe our algorithm
and then give an analysis in Section 4. Finally, we conclude in
Section 5.

2 Preliminaries

Transportation Networks A fransportation network on the Eu-
clidean plane is represented as a planar straight-line graph G(V, E)
such that each edge e € E has its supporting speed v(e) > 1 and
its orientation B(e) with 0 < B(e) < 7. An edge in E is often
called a road and a vertex in V a node. A transportation network
together with its underlying metric induces a new metric, called
a transportation distance or a city metric, which is defined as the
shortest travel time between two points using G [2,3].

In this paper, we are given a transportation network G under the
Euclidean metric consisting of n roads of k speed-orientation pairs.
We let dy be the Euclidean distance on the plane and d the city
metric (or the transportation distance, interchangeably) induced by
G and do. We shall denote d(s, p) just by d(p), throughout this

paper.

Roads on the Euclidean Plane The most fundamental observa-
" tion about roads on the Euclidean plane is given as follows.

Observation 2 (Bae and Chwa [3]). 7o reach a destination as
quickly as possible, in accessing a road e € E from a point p, the
vle) 'f

possible, otherwise, the access should be through the closer node

accessing angle from p to the road e must be 7 /2 £ sin™}

incident to e from p.

We fet a(e) = sin™" B(I—J for each road e € E. Note that, by
the above observation, unless we enter a road through its incident
node, the entering direction is one of 4k predetermined directions,
namely D := {8(e) £ 7/2 + a(e) | e € E}, since we have only k
speed-orientation pairs for roads.

We call a path P is called primitive, if P contains no nodes in V
except its endpoints and passes through at most one road. Also, we
call a primitive path with shortest length a shortest primitive path.

Lemma 3 (Bae and Chwa [3]). Given a transportation network
G on the Euclidean plane, for two points p, q € R?, there exists a
shortest path P connecting p and q such that P is a sequence of
shortest primitive paths whose endpoints are p, q, or nodes in V.

This lemma is very helpful in devising efficient algorithms for
the problem. If we fix the source s, turning points of shortest paths

506

are well restricted. We define F(v) for every v € V U {s} as
follows: p € F(v) if and only if p is a point on a road that is first
hit at p by a ray starting at v and following a direction in D. We let
V"=V U {s}UU,evuis) F(v) be the set of verfices. Then, the
following lemma is implied based on the above observation and
lemma.

Lemma 4. For any point t € R?, there exists a shortest path & =
(s = vo, -+ ,vx = t) connecting s and t using the transportation
network G such thatv; € V' fori =0,1,--- k- 1.

Also, we can easily compute V' by a standard plane sweep al-
gorithm and point location queries in O(kn logn) time and O(kn)
space. {3, Section 6]

Needles A needle is a generalized Voronoi site proposed by Bae
and Chwa [3] for easy explanation of geometry induced by trans-
portation networks. A needle can be viewed as a generalized type
of a line segment with additive weight; a needle, indeed, is a line
segment with a weight function that is linear over all points along
the segment.

More specifically, a needle p can be represented by a 4-
tuple (p1(p}. p2(p). t1(p), t2(p)) with t2(p) 2 ti(p) 2 O,
where p1(p). p2(p) are two endpoints and ¢1(p), t2(p) are additive
weights of the two endpoints, respectively. For convenient refer-
ences to a needle, we define some terms associated with a nee-
die: We let s(p) be the segment W and v(p) the speed
of p defined as d(p2(p), p1(p))/(t2(p) — t1(p)). The Ly dis-
tance from any point = to a needle p is measured as da(z,p) =
mingey(p){d2(2, ¥) +w,(y)}, where wy(y) is the weight assigned
to y on s(p), given as wy(y) = t1(p) + d2(y. p1(p))/v(p), for all
y € s(p).

It was shown that a SPM in our setting may have at most O(kn)
size, and further can be represented as a Voronoi diagram of O (kn)
needles under the Euclidean metric, which can be computed in op-
timal time and space [3].

Applying the Continuous Dijkstra Method We apply the con-
tinuous Dijkstra paradigm to obtain a shortest path tree (SPT, in
short) rooted at the given source s. The framework of our algo-
rithm is not so different from that of Mitchell [7] and that of Bae
et al. [4] but most of specific details are quite distinguishable. The
continuous Dijkstra method simulates the wavefront propagation
by tracking effects of the pseudo-wavefront that is easy to main-
tain but sufficient to express the true wavefront.

In our case, the pseudo-wavefront is represented by a set of
straight line segments and circular arcs, called wavelets. A wavelet
w is an arc of a “circle” centered at roof r(w).! Note that the root

Here, a “circle” means the set of all the equidistant points from a given center,
generally being a set of points or a needle.

20063 AR5 1S &L E=FF Vol 33, No. 2(A)

r{w) of a wavelet w will be a needle along a certain road in our
situation. Each wavelet w has a left and a right frack, denoted by
[t(w) and rt{w), respectively, and expands with its endpoints slid-
ing along its tracks. Each track is either a portion of a straight
line or a portion of a bisecting curve between two certain roots. A
bisector B(r, r’) between two roots © and 7’ under the Euclidean
metric is a piecewise quadratic - it may contain parabolic and hy-
perbolic curves — and can be computed explicitly in constant time,
even when the two roots are needles in general [3].

Figure 1: A road e and the wavefront propagating from s; dotted
lines represent the wavefront of each radius and dashed arrows are
tracks of each wavelet. The thick gray path shows the shortest path
from s to t and the angles marked by x are exactly a(e).

On the Euclidean plane, the wavelets are basically circular arcs.
However, a road e makes wavelets which are straight segments in-
clined at angles 3(e) + a(e). Since we have k speed-orientation
pairs for the roads, we have only 2k angles for the inclinations
of straight wavelets. Tracks of straight wavelets are initially also
straight and their directions are 3(e) + 7/2 + afe) € D.

After running the continuous Dijkstra method, we obtain a SPT,
a vertex-labeled tree rooted at the given source s such that every
path to s through its vertices in the tree leads us to a shortest path
with respect to the city metric d. We take V' as the set of ver-
tices of our SPT. We observe that V' contains O(kn) vertices and
guarantees that we detect and handle combinatorial and geomet-
ric changes of wavelets by Lemma 4. Furthermore, we are able to
determine a SPT uniquely with the vertices V.

3 The Algorithm for the SPM

Our algorithm works with two steps: we compute a SPT rooted at
s by applying the continuous Dijkstra method and then construct a
shortest path map from the SPT. The framework of our algorithm is
the same as in [4] which solves the city Voronoi diagram problem
under the L; metric. - Thus, we shall focus on how different our
setting is from the L, case and how to handle such differences,
rather than presenting a full description of the algorithm.

507

Each vertex v € V' has a label #(v) and initially {(v) = oc.
After completing the continuous Dijkstra method, v will have a
finite label £(v) < oc and its predecessor pre(v) in the resulting
SPT; indeed, at the end of the first step, {(v) will become equal to
d(v), which is the length of the corresponding shortest path from s
1.

For that purpose, we maintain the set of wavelets and keep track
of their effects by tracking events at every step. An event is as-
sociated with each wavelet and has its corresponding event point
and event distance. We predict and handle two sorts of events
during the algorithm: Closure events occur when two tracks of a
wavelet meet at a point, namely the closure point, and the associ-
ated wavelet degenerates to the closure point. Vertex events occur
when a wavelet, either its interior or its endpoint along a track, hits
avertex in V',

We initially set the current event distance & to zero and increase
8. As the current event distance ¢ increases, we keep track of acrive
wavelets that represent the circle with radius é centered at s. This
can be done by maintaining following data structures:

o Event Queue Q is a priority queue containing active wavelets
indexed by event distance. A wavelet w is stored in Q with
its left/right tracks [t(w) and rt{w), its root r{w), its left/right
neighbors L(w) and R(w), and its corresponding event.

SPM(8)-subdivision is a partial subdivision of the plane.
Each cell in SPA{(§)-subdivision represents the locus of a
wavelet until event distance § from when it has been cre-
ated or modified, and is either a pseudo-triangle or a pseudo-
quadrilateral whose boundary may consist of quadratic curve
segments such as parabolic and hyperbolic arcs. In particular,
we allow SPM (d) cells to overlap since two wavelets can
collide with each other. We, however, fix up such unpleasant
situations in a conservative way so that we will have no over-
lap among S P A (6) cells at the end of the algorithm. A cell is
called open if it consists of an active wavelet in its boundary
or, otherwise, closed. Every open cell contains exactly one
active wavelet in the pseudo-wavefront at distance 4.

We instantiate, modify, or terminate a wavelet when a certain
event occurs. Performing such operations for an active wavelet
is accompanied with updates for data structures such as the event
queue Q and SPAM (§)-subdivision. Every time we instantiate or
modify a wavelet, we also do the following procedure; (1) we de-
termine the corresponding event point and event distance, (2) in-
sert the wavelet into Q or modify it in Q, and (3) create a new
corresponding cell in SPM (8)-subdivision when instantiating a
new wavelet, or make the corresponding SPM(6) cell closed and
create a new one when modifying an existing wavelet (so that we
maintain all the SPM (8) cells to be pseudo-triangles or quadrilat-

2006 = §3 B 3835 7S U B =T Vol. 33, No. 2(A)

erals). When we terminate a wavelet, we remove it from Q and
set the corresponding cell in S PM (8)-subdivision to be closed by
making up its boundary appropriately.

Determining the event point and the event distance for a wavelet
is performed by computing the distance to its closure point (for a
closure event), if any, and the distance to the first vertex v € V' that
is encountered as the wavelet propagates (for a vertex event). The
second one can be computed via a wavelet dragging query, which
costs O((kn)'/2+€) query time with O(kn log kn) preprocessing
time and O(kn) space, where € > 0 [7]. In fact, we need to modify
the original structure for wavelet dragging queries but this adoption
is not very difficult.

While such events completely check when a wavelet disappears
or when a wavelet collides with a vertex, what remains difficult
is detecting collisions among wavelets. We detect such collisions
also by vertex events. When a vertex event occurs at v € V'’ due
to wavelet w with root r = r(w), the label £(v) is set to the cur-
rent event distance ¢ if £(v) = oo yet. Otherwise, if {(v) < oo
(in fact, £(v) < 6), this means that another wavelet w’ has already
hit the vertex v and hence two wavelets have been colliding with
each other. This collision is also represented by an overlap, which
has been swept over twice, in SPM(6)-subdivision. In order to
fix up this kind of errors, we shall use subroutines Clip-and-Merge
and Trace-Bisector when such collisions among wavelets (over-
laps in S P M (6)-subdivision, equivalently) are detected by a ver-
tex event. (Thus, we handle collisions among wavelets in a con-
servative way.) These subroutines are summarized as follows: The
two wavelets w and w’ with roots r and r’, respectively, can be
identified, and also the two corresponding SPM (0) cells contain-
ing v. Consider walking along the path 7 from v to p;(r) that is
implied by w, and during this walk, we keep track of which cell we
are in from the cell corresponding to root 7. We search a point g on
m such that d2(g, 7"”) = da(g, r) where r” is the root corresponding
to a cell that is encountered during the walk and contains q. Note
that such g is gnaranteed to exist on 7 by the continuity of the func-
tion f(x) := da(z,r) over all z € . In other words, g is a point on
the bisector between two sets of roots corresponding to overlapped
cells. Clip-and-Merge works with two phases: Find the point ¢ as
described above, and then run Trace-Bisector (as described below)
with g as input to trace out the merge curve <. Trace-Bisector runs
with a point g which is assumed to be a point on the merge curve
7, and traces <y with g as a starting point as is done in merging two
Voronoi diagrams. We first walk along B(r,r"’), which is a por-
tion of -, in both directions out of ¢, and shift one of the two roots
at the boundary of a corresponding SP M (8) cell to correctly fol-
low portions of bisectors. During this walk, we terminate wavelets
that we have walked across, and we stop walking at point z that is
a crossing point among two wavelets and the merge curve 7, re-

508

placing the appropriate left/right tracks of the two wavelets by the
bisector between their roots.

A brief description of our algorithm is stated as follows: First,
we initialize structures we need, and instantiate four zero-length
circular wavelets along 4 vertical or horizontal tracks from s that
have root s (or, equivalently, needle (s,s,0,0)). While Q is not
empty, we extract the upcoming event from the front of @ and do
a proper procedure according to its type. This process needs ge-
ometric observations about roads under the Euclidean metric but
such observations are very natural and easy to see. Especially, if
the present event is a vertex event on v € V' and its label £(v) has
been already labeled before, then we run Clip-and-Merge to fix up
the collision between the corresponding wavelets. Once this main
loop has ended, we obtain the SPT rooted at s which consists of
labeled vertices and directed links among them. From this infor-
mation,we gather the set of needles (or roots), N = UvEV’ R,.
Note that the Voronoi diagram V(AN') under the Euclidean metric
coincides with a SPM for the source s. This has been already ar-
gued in earlier results [3]. Consequently, we can build a SPM from
the resulting SPT in O(]V]log [N]) time and O(|A|) space. For
more details, we refer to Bae et al. [4].

4 Analysis

Now, we show the correctness of the algorithm described in the
previous section, and then bound its runtime.

Theorem 5. The algorithm correctly constructs the SPT. In other
words, if the event distance is § > 0 during the algorithm, for
all vertices v with d(v) < 6, v has been correctly labeled with
£(v) = d(v) = d(s,v).

Proof. The proof is by induction on the number of vertices that
have been labeled. If the labeled vertex is only one, s, the theorem
holds. Suppose that k vertices have been correctly labeled, and
let v be the next vertex which will be labeled (with £(v) =)
by collision of a wavelet w rooted at r = r{w). Then, we have
a path to v from s following the current (partial) SPT so that the
length of the path is § = dy(v,7) = da(v,p1(r)) + €(p1(7)) by
the construction of V. Further, the inductive hypothesis gives 6 =
da (v, p1(r)) + d(ps (r)) < d(v).

Assume now that strictly d(v) < 4. We claim that any point
p € R? with d(p) < 0 has been swept over at least once when
the pseudo-wavefront reaches distance 8. This statement immedi-
ately follows from Lemma 4 and the fact that process for collisions
among wavelets is done conservatively. Thus, v should have been
swept over at least once by another wavelet, and thus a vertex event
on v should have been processed before w hit v. This contradicts to
our choice of v, and hence implies that v will be correctly labeled

20069 = @A WA 71S st TH=FEF Vol. 33, No. 2(A)

with £(v) = d(v) = 4.

We now discuss the complexity of the algorithm. In doing so,
we investigate nearest neighbor graphs for vertices under the city
metric d. The nearest neighbor graph of a set P of points under a
metric is built as follows: For each point p € P, there is a directed
edge to point ¢ € P such that g is the nearest neighbor of p with
respect to the given metric among the points P,

Here, we give an upper bound on the maximum in-degree, say
A, of the nearest neighbor graph for V/ U {p} for any point p in
the plane. By the construction of V', it is revealed in Lemma 7 that
A is surprisingly bounded by a constant. This observation will be
very helpful in showing the efficiency of the algorithm through the
following sequence of lemmas and corollaries. This process starts
with the following simple fact.

Fact 6. Let P be a set of points in the plane. The nearest neighbor
graph for P under the Euclidean metric has maximum in-degree of
at most 6.

Progf. Pick a point p € P. Let N, be the set of points in P whose
nearest neighbor is p. Then, we can find a disk D, centered at each
g € N, such that D contains p but any other points in V,. We just
fix Dy as the disk centered at ¢ whose radius is da(g, p) so that D,
touches p and contains no other points ¢’ € N,, in its interior.

We now subdivide the plane into six unbounded regions by cut-
ting the plane along three lines which pass through p and have
slopes of 0 and ++/3, respectively. For more rigorous discussion,
let us say that, each region includes one ray as its boundary but
not two; in fact, the boundary of each region is two rays start-
ing at p. Assume that two points ¢,7 € Np lie in such a re-
gion. Since q.r € N, we assert that d2(g,p) < d2(g,7) and
da(r,p) < da(g,r). However, we easily observe that D, contains
q in its interior if da(r,p) > da(g,p), since the angle Zgpr is
strictly smaller than 60°. Thus, no two points in N,, lie in the same
region and hence |N,| < 6.

Lemma 7. For any point p in the plane, the in-degree of p in the
nearest neighbor graph for V' U {p} is at most a constant.

Proof. We first observe a good property of nearest neighbors graph
among V' U {p}: Consider the shortest path 7 from any vertex
v € V' to p. By the construction of V', if m goes through a road
that is not incident to v, then it must pass through another vertex
v’ € V', which implies that p cannot be the nearest neighbor of v
since v’ is closer to v along 7 than p is. Thus, any vertex v € Ny
approaches p either by the direct path or by a path using only one
road incident to v if any. Also, D, is either just a Euclidean disk

or a union of at most 2k needle shapes in the sense of Bae and
Chwa [3].

509

Next, we consider a subset D{, of D, defined as follows: D!
is the Euclidean disk centered at v with radius da(v, p) if the path
from v to p is not using any road. Otherwise, if the path is using
one road e incident to v, D), is the disk centered at v as if e is
the only road incident to v. Note that D/, still contains p, and that
since D,, does not contain any other vertices v’ € N,, in its interior,
neither does D).

Figure 2: D, (regions bounded by solid thin segments) and D,
(gray regions) for v € N,.

Now, the problem is switched to how many such D]’s can be
there with each containing no other vertices v € N, than v. By
Fact 6, we know that there are at most 6 D/’s whose shapes are Eu-
clidean disks. For needle shapes, we fix one of k speed-orientation
pairs and let e € E be a road falling into the case. Then, the
boundaries of needle shapes produced by roads of the same type
have straight segments whose inclinations are 3(e) + a(e). Thus,
we subdivide the plane into four unbounded regions by two lines
which pass through p and have slopes 3(e) + a(e). Then, we can
easily see that no two vertices in N, that make such needle shapes
cannot lie in the same region, and hence there are at most 4 D,’J
whose shapes are needle shapes of a certain speed-orientation type.
Since we have k speed-orientation pairs for roads, we conclude that
the in-degree of p is at most a 4k + 6. O

Almost the same proof shows a bit more extended fact, which
helps to show Lemma 9.

Corollary 8. Let P be a set of points and N, C P be the set of
points g such that the nearest neighbor of q is p over all points in
P. Then, |N,| < 4k + 6 if the following condition holds for every
q € Ny, the shortest path from q to p is either (1) the direct path
or (2) using a single road incident to q.

Lemma 9. Any point can be swept over at most 4k + 6 times by
the pseudo-wavefront during the algorithm.

Proof. Suppose that a point p has been swept over K times with
K > 4k + 6 and R is the set of K roots whose wavelets have
swept over p. Let R’ := {p,(r)|r € R}. Note that ds(p,7) =
d2(p. pr) + da(pr. p1(r))/¥(e) + d(pa (r)) for any root r € R on
road e, where p, denotes the point on the segment of r that leads p
to the shortest path to r. The corresponding path from p to r (or to
p1(r)) is either just the direct path or using a single road incident

200608 B3PR8 3) /1S e T E=EF Vol. 33, No. 2(A)

to p1(r). Thus, R’ and p fulfill the condition of Corollary 8, which
implies that if all the points in R’ have p as their nearest neighbor,
obviously |R’| < 4k + 6.

However, since K > 4k + 6, there should exist two points
g = pi(r).q¢ = p1(r') € R such that da(p,7) > da(q’,7).
Thus, before a wavelet w rooted at r hits p, another one w'’
rooted at r must hit ¢’. We have two possibilities; either w” is
the first wavelet that hits ¢’ or not. If this is the former case,
SPM{(d) cells associated with wavelets rooted at r or 7' cannot
overlap by handling a vertex event at ¢’. If this is the latter case,
d(g) + d(g,¢') > d(¢’) and ¢’ should have been labeled before
¢’ is swept over by w”. Thus, w” causes a clipping at ¢’ before
w reaches p. Consequently, in either case, not both wavelets from
g and ¢’ can sweep over p. This contradicts the assumption that
K > 4k + 6 and hence the lemma is shown.

Lemma 10. The algorithm processes at most O{k*n) events.

Proof. By Lemma 9, each vertex v € V'’ can be swept over at most
O(k) times. Since every collision between a wavelet and a vertex
causes a vertex event, we can bound the number of vertex events by
O(k%n). Moreover, since wavelets get instantiated only at a vertex
event except for the beginning of the algorithm and only a constant
number of new wavelets get instantiated at each vertex event, only
O(k®n) number of wavelets get instantiated. Since only wavelets
having been instantiated can be terminated, the number of closure
events does not exceed the number of vertex events.

Lemma 11. The total number of SPM (8) cells created during the
algorithm is at most O(k*n).

Proof. We create an SPM(d) cell only when we create a new
wavelet or modify an existing one. Only at each event, we cre-
ate or modify a constant number of wavelets. Thus, by Lemma 10,
the lemma is shown.

Lemma 12. The overall time spent by the subroutines Clip-and-
Merge and Trace-Bisector during the algorithm is O(k3n).

Proof. Lemma 9 implies that any SPM (J) cell can be clipped in
the subroutine Trace-Bisector and crossed while walking the path
from v to p; (r) in the first phase of Clip-and-Merge at most O (k)
times in total. By Lemma 11, we just can bound the overall time
consumed in the subroutines Clip-and-Merge and Trace-Bisector
only by O(k%n)

Each event, before occurring, may involve either a wavelet
dragging query, which costs O((kn)!/2%¢) time for each. Also,
IN| = O(k’n) since each vertex in V' has O(k) incident roads.
Thus, the total time complexity is O(kn log kn+(k?n)(kn)i/2+e4
k*n + k?nlog kn), simplified to O(k%/2n%/2+€) since k < n.
Moreover, the city -Voronoi diagram for m sites can be obtained

510

just by initializing the event queue to consist of the initial wavelets
for each input site and regarding each site as a vertex. Finally, we
conclude the main theorem stated at the beginning.

5 Concluding Remarks

* The resulting map or diagram has information of shortest paths to

the given source or to the nearest site, and of their lengths. With
this information, we are able to get the length of the shortest path
from a query point in logarithmic time, or the path itself in addi-
tional time proportional to the complexity of the path, with the aid
of a proper point location structure.

Our algorithm can be easily extended to more general situations.
An interesting extension is to composite (geodesic) metric spaces
by roads together with obstacles; only by a little modification on
our algorithm for processing obstacle vertices, as described in [7].
Subsequently, we can construct the SPM and the Voronoi diagram
in the same time and space bounds, letting n be the number of all
the endpoints introduced by the roads and the obstacles.

References

[1] O. Aichholzer, F. Aurenhammer, and B. Palop. Quickest paths,
straight skeletons, and the city Voronoi diagram. In Proc. 18th
‘Annu. ACM Sympos. Comput. Geom., pages 151159, 2002.

[2] S. W. Bae and K.-Y. Chwa. Shortest paths and Voronoi dia-
grams with transportation networks under general distances. In
Proc. 16th Annu. Internat. Sympos. Algorithms Comput., vol-
ume 3827 of LNCS, pages 1007-1018, 2005.

[3] S. W. Bae and K.-Y. Chwa. Voronoi diagrams for a transporta-
tion network on the euclidean plane. Internat. J. Comp. Geom.
Appl., 16(2-3):117-144, 2006.

[4] S. W. Bae, J.-H. Kim, and K.-Y. Chwa. Optimal construction
of the city Voronoi diagram. In Proc. 17th Annu. Internat.
Sympos. Algorithms Comput., to appear.

[5] R. Gorke and A. Wolff. Computing the city Voronoi diagram
faster. In Proc. 21st Euro. Workshop on Comput. Geom., pages
155-158, 2005.

{6] F. Hurtado, B. Palop, and V. Sacristin. Diagramas de voronoi
con funciones temporales. VIII Encuetos en Geometria Com-
putacional, 1999.

{71 1. S. B. Mitcheil. Shortest paths among obstacles in the plane.
Internat. J. Comput. Geom. Appl., 6(3):309-331, 1996.

