초록
Beta-amyloid peptide (A$\beta$) is a major component of senile plaques and its aggregation is considered to play a critical role in pathogenesis of Alzheimer's disease (AD). Aggregation of A$\beta$ could result from both increased synthesis and decreased degradation of A$\beta$. Our laboratory is interested in understanding the mechanism of A$\beta$ degradation in brain. Recently our laboratory identified a bacterial gene (SKAP) from Streptomyces sp KK565 whose protein product has an activity to cleave A$\beta$ and thus reduce the A$\beta$-induced neurotoxicity. The sequence analysis showed that this gene was closely related to aminopeptidase. Maldi-Tof analysis showed that the recombinant SKAP protein expressed in E. coli cleaves both A$\beta$ 40 and A$\beta$ 42 at the N-terminal of A$\beta$ while an aminopeptidase from Streptomyces griseus (SGAP) cleaves at the C-terminal. We also identified a mammalian homolog of SKAP and the recombinant mammalian protein expressed in Sf-9 insect cells showed a similar proteolytic activity to SGAP, cutting A$\beta$ at the C-terminus. I well discuss the detailed mechanism of the enzyme action and its functional implication in AD.