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I. INTRODUCTION

HARPNESS mcasurc has been used in many
S engineering and scientific applications including,
for example, auto-focusing and astigmatism correc-
tion in the scanning electron microscope or trans-
mission electron microscope [2], [6]. Note that the
photographs taken by microscopes are quite well
structured than those taken by digital cameras. The
former photos may contain much more texture regions
than latter ones. Thus, the sharpness metrics for the
former ones mainly focus on the sharp edges sepa-
rating texture regions. However, needless to say, the
sharpness metrics can be applied to any photos. The
main objective of this paper is detecting blurry photos
from sharp ones taken by digital cameras. Digital
photographs are far more complex and unstructured.

Even with reasonable performance of auto-focusing
algorithms image degradation is unavoidable unless
entire robustness is guaranteed in the system [10]. In
order to automatically select blurry pictures among a
pool of digital pictures, various measures of sharp-
ness or blurriness have recently been proposed [5],
[101, [V1]. [13], [14), [15], [16], [18]). The simplcst
measure is the ratio of high frequency components
to low frequency components. Blurry pictures tend to
become smoother than crisp images, and contain less
number of edges.

Blurry pictures may have smaller gradients in
the edge regions and less energy in high frequency
components. Thus, given input images are usually
transformed by DCT or DWT, and are quantized
to scc how much high frequency components exist.
Some simple approaches count occurrence of non-
zero DCT coefficients [12]. Larger number of non-
zero coefficients means that the image is sharper. Sum
of high-frequency components larger than threshold
value 9] also plays the similar role.
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Blurry pictures may have smaller number of grey-
level values than sharp ones. Thus, counting number
of bins in the histogram of the grey-level values can be
a good solution [9]. It is assumed that a sharper image
has a larger number of bins. Extreme case is uniformly
distributed histogram with maximum number of bins.
In the same context, entropy can be used to measure
sharpness. If the probability of occurrence of each
grey-level is low, the entropy is high and vice versa.
In other words, sharp image has high entropy. The
probability distribution can be a good indicator of
sharpness. Sharper image has larger variance [6] or
larger kurtosis [19] valucs.

Blurry images are highly correlated while sharp
images are not. Thus, auto-correlation [2] can be a
good metric for sharpness. Derivatives [4] can be
another good indicator. For example, the first-order
derivative (i.e., gradient) which acts as a high-pass
filter can be a good indicator. Sharp images have large
derivative values.

On the other hand, wavelet-based blurriness or
sharpness estimation methods have been proposed
in [11], [14], [17]. For example, Rooms et al. [15]
have proposed the Lipschitz exponent-bascd method
which suits well only for medical applications such as
microscope images of cell nuclei. Ferzli and Karam
[7] propose a sharpness measure based on the Lip-
schitz regularity for differentiating between edges and
noise singularitics. This metric performs quite well
when dealing with a moderately noisy cnvironment.
On the other hand, special characteristics of human
visual system can be exploited to provide reasonable
sharpness metric [&].

Batten et al. [3] evaluate the gradient measure, auto-
correlation measure, frequency-domain measure, and
variance measure, and conclude that the last measure
is better than others in terms of computing time and
immunity to noise. The gradient measure is most
susceptible to noise, while the variance measure is
largely insensitive. The auto-correlation measure is
usually strictly unimodal. but has poor reproducibility.
Reproducible measure has a sharp peak. A strictly
unimodal sharpness measure has a single peak at the
best focus and monotonically decreasing away from
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this peak. The implementation cost of the frequency-
domain measure is significant. Another air comparison
of various methods is available in [7].

Most of the aforementioned methods aim at auto-
focussing and astigmatism correction. On the other
hand, to make better classification of pictures in the
sense of sharpness many measures have additionally
been proposed. A good measure should be invariant
to picturcs and picturc contents, and well corrclate
with perceived sharpness. Shaked and Tastl [16] have
developed an algorithm to estimate the overall sharp-
ness of a picture to determine how much sharpening
should be applied to each picture. They estimate the
global sharpness of a picture by a single scalar value.
Howcver, the single valuce criterion could not provide
sufficiently invariant measure with various pictures.
fn order to solve this problem Banerjee et al. [I]
have segmented pictures based on the rule-of-thirds to
exploit local features. Lim et al. [10] have developed
an effective, efficient algorithm which uses several
global figure-of-merits computed from local image
statistics.

In this paper, we propose a new measure based
on computing the prediction residue between neigh-
boring pixcls in images and computing variance to
measure the sharpness or blurriness without reference.
This measure is totally different from the previous
variance measure [6]. Previous measure computes
variance of the pixel values themselves, while the
proposed measure computes variance of the prediction
residuc of neighbor pixcls. This paper shows why the
proposed measure is mathematically reliable, easy to
implement, and fast. In addition, the feasibility of
the proposed measure is shown with thorough ex-
periments with various images. Regardless of the de-
tection accuracy, existing measures are computation-
intensive. Howecver, the proposed mcasurc in this
paper is not demanding in computation time. For
this measure, transform is not necessary. Complex
and time-consuming operations are not requested.
Computing prediction residue for P sample pairs
and computing variance are sufficient, where P is
approximatcly 300 among M x N samplc population.
The prediction operator is just computing difference
between adjacent pixels. In addition, accuracy of the
proposed measure is very high.

li. THEORETICAL BACKGROUND
A. Previous Variance Measure

The variance of an image is 2 good measure of
sharpness [6]. However, its performance needs to be

further improved. The variance for sharpness measure
is defined as follows:
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where 7 represents the mean intensity of (v, y).

Note that the distribution, i.e., histogram of a real
image is, in general, neither Gaussian nor Laplacian.
On the other hand, real images are highly correlated.
The variance measure in Eq. (1) does not take this
correlation into account.

B. New Variance Measure

In general. images are highly correlated. When
there is significant correlation between successive
samples, it should be possible to predict the value
of any given sample, with a reasonably high degree
of accuracy. from some of the preceding samples. The
difference between the actual image and the predicted
version is often called prediction residue or prediction
error. If the prediction algorithm is reasonably good,
most of the values in the residue will be zero or very
close to it. This in turn means that the distribution
function of the predicted signal will be peaky. It is
the decorrelation process in image compression. When
the image is decorrelated, its distribution is nearly
Gaussian or Laplacian-like.

There arc many decorrclators available in the liter-
ature. The simplest predictor for an image is one that
uses the previous pixel in the image as the prediction
of the current pixel. Formally, if we denote the current
pixel by g(z. y) and the previous pixel by g(w,y—1),
the prediction §(:r, u) of g(a:. u} is given by §(x ) =
g(x.y—1). In this casc, the prediction error. e{.e. ) 18
nothing but the difference between the adjacent pixels.
Hence, e(x,y) = g(w,y) - g(r.y — 1).

Let p be the cocfficient of corrclation between
g(e.y — 1) and g(r.y). Suppose that relationship
between g(r.y — 1) and g(x.y) can be expressed
as g(r.y) = pgle.y = 1) + (. y). where (. y)
denotes a white noise and is uncorrclated with
g(r.y — 1). Then, the variance of e(r.y) is given
as Ve )=V {(p— Ogleoy = 1)+ 2(rm)} or
Vi{e(e.y)} = (p= 12V {gle,y = N}+V {c(w. 1)}

Generally, V {e(r,y)} is much smaller than
V {g(r.y — 1)} except edge points in images. From
some experiments, we found that p of the blurred
images tends to be larger than that of the original
images. The number of edge points of the original



Baboon image is relative larger than that of the blurred
image. These imply that the blurred images has much
smaller variance of e(x,y) than the original.

The variance for sharpness measure of using residue
prediction is defined as follows:
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wherc € represents the mean intensity of e(z, y)’s. Eq.
(2) can be rewritten with different predictor or differ-
ent organization scheme of the prediction residue. Let
u be the prediction residue vector. Then, the predic-
tion residue vector can be modeled as Laplacian-like
distribution as follows:
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Note that variance is still a good measure of the
Laplacian-like distribution in Eq. (3) showing disper-
sion of the sample values although the best dispersion
measure is
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where ¢ stands for the median of e(x y)'s. If the
vartance of the Laplacian-like distribution is large, it
shows that adjacent samples are less correlated. As
a consequence, it can imply that the image contains
many high frequency components. The prediction
residuc between adjacent samples in the blurry images
1s smaller than that in the sharp images. From a sct
of test images variance values are listed in Table |.
The figures are different from filter to filter, resolution
by resolution, camera by camera, and so on. The
figures in Table 1 arc obtained by using Gaussian
low-pass filter with MATLAB fspecial function. In
order to reduce the computation time considerably,
‘we take 30 sample pairs and compute measure based
on the prediction residue of the sample pairs since
the Baboon image size is small (i.c., 256x256). The
number of sample pairs can be adjusted to meet the
requirements such as computing time and accuracy of
the detection.

As shown in Table 1, the variance of the sharp
Baboon is 2,135 while that of the blurred image is
just 3 computed with 30 sample pairs. The variances
of the blurred images depend on the degree of the
blurriness. More blurred images may have smaller
variances, and less blurred ones larger variances. The

TABLE 1
VARIANCES OF A SET OF STANDARD TEST IMAGES: SHARP ONES
AND THEIR BLURRED COUNTERPARTS

Images o2 of sharp image o7 of blurred image
Airplane KEK) 1.4
Baboon 21356 33
Lenna 11.8 1.9
Peppers 569 6.4
Peppers2 27.1 38
Sailboat 220.0 3R
Tiffany 14.0 0.4

variance figures in Table I are obtained from the sharp
images. The variances of blurry images are obtained
from blurry images artificially blurred version of the
corresponding sharp images. Note that these figures
justify our assumption.

[I1. EXPERIMENTS

For the first experiment we take 140 photographs
using a digital camera of spatial resolution 960 x 1280.
Among them 70 images are realistically blurry, and
the rest of them are sharp or partially blurry. For the
second test, 200 sharp color photographs of spatial
resolution 1536x2048 arc taken. Then. the resolution
is adjusted to 960x [280. We add artificial blur to
these images using Gaussian and motion filters. The
fspecial function is used for the blurring.

In these experiments that usc both scts of test
images we compute variances (see Figure 1) with 300
sample pairs from A/ x N sample population. The
horizontal axis shows the iimage number while the
vertical axis shows the variance value of each image.
As is expected, the sharp images have larger variances
than blurry ones. For each image number in Figure 1,
the red one stands for the variance of the associated
sharp image. The blue one and green one represent
the variances of motion-blurred and Gaussian-blurred
images, respectively. However, unfortunately, the vari-
ance of the blurry one can infrequently be larger than
sharp one as shown in Figure 1. Similarly, the variance
value of the blurry one can be relatively large. Thus,
it is not easy to decide appropriate threshold value
that can perfectly separate sharp images from blurry
ones. Such threshold values may not exist due to
imperfect measures. In other words, false alarm is
incvitable. Motion-blurring is casicr than Gaussian-
blurring in this experiment since that variance is far
smaller than this variance. If the degree of motion-
blurring is insignificant. the false alarm rate will
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i. Variances of 140 images (top) with 70 sharp ones (blue)

and 70 blurry ones (red). those of 600 images (bottom) with 200
sharp (rcd). 200 motion-blurred (bluc). and 200 low-pass filtered
ones (green) computed using the proposed measure in this paper

increase accordingly. However, the degree of motion-
blurring by novice photographers 1s, in general, more
serious than that of this experiment.
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