Evolution of Electronic and Magnetic Properties of Magnetite Thin Films by V, Cr, and Mn Substitution Kwang Joo Kim¹*, Hee Jung Lee¹, Seung-li Choi¹, Jae Yun Park² ¹Department of Physics, Konkuk University ²Department of Materials Science and Engineering, University of Incheon Variation of electronic and magnetic properties and the related ionic spin configuration in magnetite (Fe₃O₄) thin films substituted by 3d transition metal (TM) V, Cr, and Mn has been investigated. Cubic structure is maintained for all the cases (T_x Fe_{3-x}O₄, T = V, Cr, and Mn) for x 1.0. The lattice constant increases with increasing Mn substitution while it decreases for Cr substitution. The ionic valence of V, Cr, and Mn are estimated by analyzing X-ray photoelectron spectroscopy and Mössbauer spectroscopy. Change of the electronic structureby TM substitution can be figured out using optical absorption data measured by spectroscopic ellipsometry. The saturation magnetization (M_s) measured by vibrating sample magnetometry (VSM) also varies with dopant species and density. The increase of M_sat low V and Cr density can be explained in terms of spin-flip of octahedral Fe²⁺ ions.