Controlling carrier types in MnGeAs₂ and MnGeP₂ thin films

Jeongyong Choi¹*, Sunglae Cho^{1,2}, Sungyoul Choi³, Young-Hun Hwang¹

¹Department of Physics, University of Ulsan

²Nanodevice Research Center, Korea Institute of Science and Technology

³Tera Electronic Device Team, Electronics and Telecommunications Research Institute

The research for promising ferromagnetic semiconducting materials, whit high magnetic moments and high Curie temperature (T_{C}), is of the utmost importance spin-dependent electronic devices. We have synthesized a new semiconductor, MnGeAs₂, whose crystal structure is chalcopyrite, which are "genealogically" related to the more familiar tetrahedral coordinated zinc-blende materials. It showed ferromagnetism with T_{C} = 340 K, and magnetic moment per Mn at 5 K of 3.42 μ_{B} , comparable to the calculated 3.2 μ_{B} . The calculated plane wave (FLAPW) method shows an indirect energy gap of 0.06 eV.[1]

Here we will present the structural and magnetic properties of MnGeAs₂ thin films grown on GaAs(100) using molecular beam epitaxy. The growth temperature was 350 °C and the growth rate of Mn and Ge were 0.25 Å/s under arsenic ambience. Structural properties were investigated using RHEED, XRD, AFM, and TEM studies, resulting in the chalcopyrite crystal structure of MnGeAs₂. The temperature dependent resistance results strongly support the presence of ferromagnetic phase transition around 340 K determined in magnetization measurement. On the other hand, we observed an anisotropic magneto-resistance and an anomalous Hall effect in n-type (~10²⁰ cm⁻³) MnGeAs₂ thin film, indicating the presence of spin polarized electron carriers in MnGeAs₂.

Magneto-transport properties will be discussed in detail. MnGeP₂ show a p-type. It is well known that various native defects such as group II and V vacancies and antisite defects are present in II-IV-V₂ chalcopyrite with densities up to 10^{20} cm⁻³. The p-type behavior of MnGeP₂ may arise from native point defects such as cation Mn and Ge vacancies and antisite defects: Mn_{Ge} and the n-type carrier for MnGeAs₂ from anion As vacancies and antisite defects: Ge_{Mn}.

These defects were depending on the ratio of ambient P and As for the growth of MnGeP₂ and MnGeAs₂ thin films. In this talk we will present the efforts on controlling the carrier types and carrier concentrations in MnGeP₂ and MnGeAs₂ thin films.

Reference

[1] S. Cho et al., Solid State Commun. 129 (2004), p. 609.