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Al 1 A Introduction

Linear combinations of variance components are frequently considered when
parameter of interest is individual or gross variability in statistical experimen-
tal designs. Because of the lack of an exact confidence interval for a general
linear combination of variance components, many researchers have suggested
various methods for setting approximate confidence intervals on linear combi-
nations of variance components. Among those methods, the Modified Large
Sample (MLS) Method has its merit in terms of simplicity, flexibility, and good
empirical performance. Generally, the MLS method can give an approximate

confidence interval on any linear combination of variance components, i.e.

clnf+02022+~--+cpaz (1)

where o2, ... ,O'g are variance components and c?, ... ,cf, are fixed non-zero

real numbers. The idea of MLS method was proposed by (4w, o) and (8,
W) independently. The main idea of the MLS method was well described by
(4w, o) as follows: when each of the marginally exact quantiles of estimators
of variance components are known, we can incorporate this knowledge into
setting a good approximate confidence interval for a linear combination of

variance components by interpolating the given exact quantiles.
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A 2 A  Overview

In the next section, the main idea of the original MLS method will be intro-
duced when all coefficients are positive and estimators of variance components
are independent. The following two sections will discuss the extensions of the
MLS method for the general cases such that (i) signs of coefficients are un-
restricted, (ii) setting confidence bound on a ratio of linear combinations of

variance components.

Throughout this article we denote the distribution of a random quantity x
by L£(x). Hence, £(x) = L(y) means that x and y have the same distribution.
We use N (g, V) to denote the normal distribution with mean g and covariance
matrix V and use x? to denote a random variable having the central chi-square
distribution with r degrees of freedom. The ath quantile of N(0,1), £(x?),
and the central t-distribution with degrees of freedom r are denoted by z,,
X%, and to r, respectively. The transpose of the vector x is denoted by x’ and

the Kronecker product of two matrices A and B is denoted by A ® B.

Al 3 2 Main Idea of Modified Large Sample
Method

Consider the problem of setting a 1 — a upper confidence bound for n =
10+ -+ +¢p02, where 07,...,02 are unknown variance components and cy,...,¢,
are known positive constants. Let 62 be an unbiased estimator of o2 such that
L(67) = L(on;'x2), i = 1,...,p. In applications, &7 is typically a quadratic
form of an observed normal random vector (e.g., a sample variance or a mean

square error). For any fixed 7, an exact 1 — & upper confidence bound for o2 is

2
n; . A o n;
> 67 =6+ af<2 —1). (2)
Xa,n,- Xa,ni

When p > 2, however, an exact upper confidence bound for n usually does not

exist.
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Suppose that 6%,..., f, are independent. Then

Var(c167 + - - - + 62) = Var(83) + - - - + 2 Var(?)
=cotn;?Var(x2 ) + - + cioan, 2\/’aur()(np)
=clot2ni + -+ oy2ns (3)

An estimator of the variance in (3) is then obtained by replacing o} in (3) by
its estimator 6}. For large n;’s, these results and the Central Limit Theorem

lead to the following approximate 1 — « upper confidence bound for #:

~2 ~2 ~4o, 1 ; 40, —
€10} + -+ o, + zl_a\/cfa‘onl + -4 2aA2n St

~2

52 -1,
=107+ -+ o, + 261222 ny

Laa@sied gt (@)

) i-

1, ...,p, and named this method as the modified large sample (MLS) method.

In view of (2), (8, W) proposed to replace 222__n; "' in (4) by (

The resulting upper confidence bound for 7 is then

2
2
A - ~ n N n
Claf+'+0p012]+ C%U%( 21 _1) +.+C]2)O—g< 2p _1) (5)

a,ny a,np

Using a similar argument, we can obtain the following MLS lower confi-

dence bound for #:

2
2
) R . n N n
clfff+~-+0p0§‘ C%U%( 2 1 _1> -{—---—{—c%af;( o —1) - (6)

Xl—a,n1 1—a,ny

An equal-tail two sided MLS confidence interval for 77 can be obtained by using
the upper bounds (5) and lower bound (6) as the interval limits.

The MLS confidence bound has the following properties:

Property 1. The confidence bound in (5) is still asymptotically correct, i.e.,
the coverage probability of the confidence bound converges to 1 —« when

all n;’s increase to infinity. This is because

2
.. nf{mn
lim—{ — —1) =2,
" 2 \ X

which can be proved using the Cornish-Fisher expansion.
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Property 2. When o7 > 0 and o7 = 0 for all j # i, the confidence bound
in (5) reduces to the confidence bound in (2) and, hence, is an exact

confidence bound. This property is not enjoyed by the confidence bound
in (4).

The Property 1 implies that the coverage probability of the MLS confidence
bound converge to the intended confidence coefficient 1 — « as sample sizes
become large. The finite sample evaluation of coverage probability of the
MLS method are investigated by using numerical integration in (8, W). The
numerical evaluation in (8, W) indicates that the MLS method is comparable
to the methods by (1t, a6,a) and is also conservative in sense that the finite
sample coverage probabilities are larger than 1 —« for most of cases considered.
The Properties 2 is the main and unique advantage of the MLS method over
other competing methods. When one of variance components is relatively
larger than the others, the MLS method gives an almost exact confidence
bound. This property was also discussed by (4w, o). Other than these two
properties of the MLS method, another nice property is its simplicity. '

Al 4 A An Extension of MLS method to Dif-
ference of Variance Components

In this section, we will consider an extension of the MLS method when signs
of coefficient in (1) are unrestricted. Originally, (4w, o) considered an approx-
imate confidence bound on inter-subject (between group) variance in one-way
classification model by using similar idea to (8, W). First, the Howe’s idea will

be introduceed and its generalization will be discussed.

Consider two mean squares 6% and 62, which are distributed independently

2 2\, 2 2.2
£(a_%) — ,C ((Ug, +Ue)Xn1) , L(&g) _ £ <ae>\n2> .

n1 Na

and

Therefore, an unbiased estimator of o2 is given by 62 — 62. For this example,
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if

F== < Fa,rn,nzy
then the upper confidence bound of o2 is zero. (4w, o) considered this as an
extra piece of readily available information and incorporated this information

with the idea of MLS method to construct more accurate confidence bound on

oZ. The 1 — & MLS upper confidence bound of 02 can be defined as

52— 62+ VV
where )
.4 n1 -4
V=a] <X2 — 1) + Ao (7)

Now, the constant A in (7) can be determined by forcing the upper confidence
bound 62 ~ 2 + /V to be 0 when 62 /62 = F, n,.n,- This imposing condition
leads to the equation for A. By using the solution for A from the given

equation, 1 — e MLS upper confidence bound of o2 is given by

{0 if F< Fann, -

5-1 _&g—}-\/v ifF>Fa,n1,nz7

where F' = 6%/6% and

2
N m A
V=o‘f< ! _1) o

a,n]

2
n
(Fa,nl,nz - 1)2 - Fa2,n1,n2 <X2 - 1) } :
&,y

Note that the confidence bound in (8) use an extra information such as g2 > 0

in the model considered.

Now, consider more general parameter c,0? — c,05 where ¢, and ¢y are
known positive real numbers. For this general case, however, if the parameter
107 — cp0? can be negative, the MLS confidence upper bound in (8) is no
longer valid. For this case, (8B, G) extended Howe’s confidence bound in (8)

as

{Cl&% _ 026-% + \/W if F< Fa,n1,"2 (9)

6} =05 +VV i F > Fopn s,
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where F and V are same as in (8) except using ¢;4? instead of 62 and

) () ) et ()
-1) — -1 +éo | —— -1} .
<F0t,"1 sN2 Fa,nl ;N2 Xg,nz 2 X%—a,nz

Furthermore, (90G, B) considered MLS confidence bounds for more general

case such that the parameter of interest can be described as

Zga - Zc]

Jj=gq+1
where ¢ < p and ¢y, ..., ¢, are all positive real numbers. Also, the alternative
form of the MLS upper confidence bound was proposed by (90G, B) without

considering F-test in (11) and it can be described as

Ega - Z cJ (10)

J=q+1
where

W= X:cr"a‘*L2 Z ex ]2L3+Z Z cic;67 o 2Lij

Jj=g+1 i=1 j=q+1

and L;, L;, L;; are appropriately chosen to make the MLS upper confidence
bound exact for some special cases. Note that We can simplify the confidence
bound in (8) by ignoring the cross-product terms » I_ E g1 ¢ic;07572 Ly

Moreover, if we consider Property 1 in the previous section as the imposed
condition for special cases (i.e., an exact confidence bound when only one
variance component is positive and the others are zero), the following simplified

1 — o MLS confidence upper bound can be obtained:

Zcm — Z ¢;67 (11)

j=q+1
where

W* = Z 612 + Zco

i=1 J=g¢+1
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Al 5 24 An Extension of MLS method to Ratio
of Variance Components

In many experimental designs with variance components models, a certain ra-
tio of variance components is the parameter of interest. For example, under
one-way random effect model, a ratio of between variance and total variance is
often considered as important parameter which is called by heritability mea-
sure in genetics. The MLS confidence bound on the ratio of variance compo-
nents have been extensively developed by (9B, G1; G, B; 9, G95; B, G). In
this section, the MLS confidence bound by (95B, G) will be introduced.

Consider the problem of setting a confidence upper bound on the ratio

2 2
05 + 03

ol + o2
The 1 — a upper bound on the ratio p can be defined by U such that P(p < U)
is close to 1—a. Note that Plp < U] = P[(03+02)/(0?+03) < U] = P(yy < 0)
such that
Y =-Ud}+(1-U)o} +03. (12)

Since 7y in (12) is a linear combination of variance components, the MLS
method discussed in the previous section can be applied to find 1 — o MLS
confidence upper bound on 7y such as P(yy < U*) = 1 — a. In the other
hand, we also desire P(yy < 0) = 1 — a. Therefore, we have the quadratic
equation U* = 0 in terms of U and the solution for U can be considered as

1 — o MLS confidence upper bound on the ratio p.

But, there is one difficulty in constructing confidence bound on ~y in (12)
since the sign of U in (12) cannot be determined prior to setting the bound.
For example, if 02 > o2, then p > 1 which, in turn, implies U > 1. Therefore,
we can determine the sign of (1 — U) which is the coefficient of 3 in (12). On
the other hand, if 02 > 0%, then p < 1. For this case, (95B, G) recommend
to restrict the range of U by 0 < U < 1. For either case, as discussed in
the previous section, we can apply the MLS method by (8B, G) to construct
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1 — a MLS confidence upper bound on 7y and its form is given in (11). (95B,
G) proposed the procedure to find MLS confidence bound on p such that (i)
Assume 03 > o2 (ii) compute an upper bound U (iii) if U > 1, then stop (iv)

if U < 1, then assume 02 < ¢2 and find U again.

(95B, G) considered constructing MLS confidence bound on more general

parameter such that

g .. 2 _ NP 2
i=1 G0} Ej:q+1 Cjo;
T 2

> k=1 CkO%

The explicit form of confidence interval and more details can be found in (95B,

G).
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