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ABSTRACT: People frequently discuss equipment behavior in terms of time{age) and usage(mileage).
Common examples are automobiles in which time and usageare usually included in discussion of longevity.
In this paper a structured examination of bivariate measures of equipment utilization is performed and some

useful model forms are developed and evaluated.

1. INTRODUCTION

In general age and mileage are not the only two
quantities that might describe device longevity. We
use the terms time and usage in generic terms and
may represent quite different measures. In the
example of an automobile tire, age might correspond
to accumulated mileage and usage might be
measured as tread loss. The point is that device life
is a resource that may be best represented and for
which the comsumption may best be measured using
a two (or higher) dimensional vector and the
quantities that comprise the vector are specific to the
equipment.

In this paper a structured examination of bivariate
reliability models is performed is developed. The
paper is structured as follows. In section 2 literature
review is done. In section 3 bivariate reliability
models are constructed. The models examined are
those in which the two variables are related by a
stochastic function and those in which the variables
are simply correlated. In section 4, definition and
interpretation of bivariate probabilities are given so
that we can better understand the models proposed
in section 3. In section 5, the concepts such as
cumulative distribution function, reliability function
and hazard function that are defined in section 4 are
illustrated to the example models. In section 6,
conclusion is given along with future research
opportunities.

2. LITERATURE REVIEW

Most of the previously developed bivariate
reliability models treat the two variables as
functionally related. Many of the models of wear
process(e.g., Mercer[1961] and Lemoine and
Wenocur [1985]) and several of those for cumulative
damage (e.g., Barlow and Proschan [1975] and
Birnbaum and Saunders [1969]) portray equipment
reliability in terms of deterministically defined
deterioration occurring at random points in time.

The analytical emphasis with the models based on
stochastic functions has also been their reduction to
a single dimension — time. The stochastic wear

models and cumulative damage models that treat
damage magnitude as a random variable are all
defined in a manner that permits focus on reliability
in time. Even the diffusion process models (Cox
[1962]) that are expressed comprehensively in terms
of both variables are analyzed in terms of first
passage time to a failure state.

However, there are several papers that address
bivariate and multivariate reliability models in a
very different context than the one treated here.
Specifically, Marchall and Olkin [1967a, 1967b]
developed multivariate models for the reliability of
series systems comprised of non-independent
components. In the construction of the models.

3. BIVARIATE FAILURE MODELING
3.1 Notation

T time to fatlure

U usage to failure

g(t) function relating usage and time

a,pB.y parameters of the function g(t)

7,() density on the prameter «

A(t),n(u) time and usage functions that determine

the failure hazard
correlation coefficient
Sfry(tu), F,, (t,u) bivariate failure density and
distribution functions
FT‘U (t,u) bivariate reliability function
3.2 Example failure models

3.2.1 Stochastic functions

We consider four example forms here:

(i) g)=at+p

() g@)=at’*+pBt+y

(i) g(t)y=at”

We introduce randomness into the function by
treating the parameter « as a random variable
having distribution () . This poses random
variation on the extent of usage experienced by any
time. The use of the distribution 7z, (-) to construct
the marginal probability distribution on usage is
accomplished using a transformation of variables. In
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general
Once the marginal distribution of usage is obtained
we can construct the joint failure density using the

uﬂ)

Se fy(u)—-ﬂ (

conditioning relatlon

Fro(t10)= frg (€10 f, () )
and the conditional density f. (#|u) is obtained
by using the well-known relatlonshlp between a
density and its hazard function:

= [ 2 )
fT|U (tlu)= ZTlU(t |u)e 'L "

[_I‘:zng(r)(ﬂ“)d']

@)

We assume that the conditional hazard function on
time given usage may be stated as

Zpy (| 0)= A1) +71(u) (3)
so that the definitions of the functions A(¢), n(u)
and g(¢) determine the conditional hazard and
ultimately the bivariate life distribution. Here we
assume simple linear functions A(f)=A¢t and
n(u)=nu and focus on the function g(¢). Under
this modeling format, the bivariate life distribution
corresponding to form (3) above is obtained by

= an(r)(t |u)e

Zpy (tlu)=At +ng(?) 4)
and applying (1) and (2) to obtain
nw+p), A, u-p
Sro(tu )_ Xp{ 2 Et }ﬂa(T)
&)

The same analytical approach yields the following:

fru(t’u):htnuexp{ n(u+27),_3l+77ﬂ’z}”a(u_—/¥i)
J 7z 3 - :
©)
ﬂ,t+nu nu A . u
t,u)= -2y u 7
fT,U( u) " exp{ il > }”a[tn) ()
Jrp(tu)= W1t )
p+1
A, 0, | "B 1
expe——t +—t—| ———In— |t
2 B 1n1+ﬂu 1-u
1-u
o (Ln280) o
t 1-u

for cases (i1), (iii), (iv) respectively.

3.2.2 Correlation
The first is the generalization of the bivariate
exponential model defined by Baggs and Nagagaja

[1996]. In this model, the reliability is

Fru(tu)=e %™ 1+ pl—e™)1-e™)  (9)

so the corresponding density function is

frotu)=Ane ¥ (14 p(1—-2e7" —2e™ +4e” ™))

(10)

the joint hazard function is
A+ p(1 =27 =2¢™ +4e" 4 ™))
ZT,U (t’u) = - —nu —(At+nu)
(+p(l—-e”—e™+e )

(1n

and the marginal densities are

()= Ae Fand f,(u) =™
which are both constituent exponentials regardless
of the value of p.
A second model is the bivariate Normal. The density
function for this model is well known to be

1
fro(tu)= -
2ro0,\1-p
—_— 2 _— —_— —_—
exp 1 : 4 lzl,) _2pl Hu—p,) (W ;Ztu)
20-p°)| o 0,0, o,

(12)
The marginal densities are Normal.
One final model is the one stated by Hunter [1974a]
in a queueing context but also consistent with
reliability interpretations:

Frottay=2L )“” A1 {2‘/_,/Antu]exp{ ”Z"}

(13)
where 7 (1) is the modified Bessel function of the
first kind of order n; and p is positive. The
marginal densities are

fr(®=4e™ and f,(u)=ne™

4. MODEL ANALYSIS

4.1 Bivariate probability distributions

First we interpret the cumulative failure probability

F,,(t,u) as the probability that failure occurs by

time t and usage u, that is;
ru(tu)=Pr[T <t and U <u] (14)

In addition to equation (14) the rectangles are

PriT <t,U>u} , Pr[T <t,U <u] , and

Pr(T >¢,U >u].

It is not obvious whether the following cumulative
probabilities

Pr(T<t,U>u]= [ [ f, (s, v)dvds (15)
and
Pr[7>0,U <u]= [ [ f;,(s,v)dvds (16)

are survival probabilities. So we call them marginal
survival probabilities.
A further point is the fact that the reliability at (#,u )
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does not include the marginal survival probabilities
(15) and (16). The rehability at (£,u ) 1s as follows:

Fro(tu)=Pr[T 26U 2ul= [ [ fr,(s,v)dvds

(In

The apparent paradox is that F. , (t,u) # 1 - F, , (t,u).

For any rectangle, say [t, <T <t,,u, <U <u,}] in
the plane, the probability of observing a failure at a
point in the rectangle is:

Pr[t1 £T<t,,u, UL uz] =k, (t,u,)

- T)U(tz’ul)_Fr,U(t19u2)+FT,U(t1>u1) (18)
4.2 Hazard fuctions
zp,(t,u)

) Pr[tST£t+At,uSUSu+AuT>t,U>u]
= lim
810 AuAt

Au—0

lim Pr[tSTSt+At,uSUSu+Au]
A0 AuAtPr[T>t,U>u]

Au—0

1 lim Fry(+ Atu+ Au)— F o, (t+ At u) = Fr o (Lu+ Au) + Fr oy (tu)

T Fru(tu) 50 Auht

1@
FT,U (t,u) otou

_ fr,u (t,u)
FT,U(t,u)

F.,(tu)

(19)

By analogy with the univariate case, one may want
to construct bivariate models given the bivariate
hazard. For the univarite case, this approach may be
accomplished using the relationship:

z(t)=InF(t) or F(t)=e "

4.3 Moments

The moment generating function for the bivariate
failure distribution is:

My, (6,6,)=E[ ¥ )= [ [ €% £, (¢, u)dudt

(20)
and the moments of the distribution are obtained as:

ak
E[]=—

1

M,,(6,6,) and

8-0
=0

ak
E[uk]:a—B:MTVU(QI,HZ) =»0 (21)

[
6=0

4.4 Renewal functions

W= [ [ 15" -su-v) 1, (s.v)dvds (22)

The definition and interpretation of the associated
counting process and the bivariate renewal function
is less obvious and may depend upon the application.

5. EXAMPLE CALCULATIONS OF BIVARIATE
FAILURE MODELS

In the case of stochastic function models assume
7, (-) is a negative exponential density of the form

7w, ()=ce” 23)

Then with A=10"°, B=10, 7=1.5*%10"°, ¢c=1000,
equation (8) yields the following values for the
cumulative distribution function as in Table 1.

Table 1. CDF values for equation (8)

Corresponding reliability values are shown in Table

The hazard values are shown in Table 3.

6. CONCLUSIONS

In this paper the models examined were those in
which the two variables are related by a stochastic
function and those in which the variables are simply
correlated. The concepts such as cumulative
distribution function, reliability function and hazard
function were illustrated to the example models.
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